Multistability and coexisting soliton combs in ring resonators: the Lugiato-Lefever approach

被引:26
|
作者
Kartashov, Y. V. [1 ,2 ,3 ]
Alexander, O. [1 ]
Skryabin, D. V. [1 ,4 ]
机构
[1] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England
[2] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Castelldefels, Barcelona, Spain
[3] Russian Acad Sci, Inst Spect, Troitsk 142190, Moscow Region, Russia
[4] ITMO Univ, Dept Nanophoton & Metamat, St Petersburg 197101, Russia
来源
OPTICS EXPRESS | 2017年 / 25卷 / 10期
关键词
CAVITY SOLITONS;
D O I
10.1364/OE.25.011550
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We are reporting that the Lugiato-Lefever equation describing the frequency comb generation in ring resonators with the localized pump and loss terms also describes the simultaneous nonlinear resonances leading to the multistability of nonlinear modes and coexisting solitons that are associated with the spectrally distinct frequency combs. (C) 2017 Optical Society of America
引用
收藏
页码:11550 / 11555
页数:6
相关论文
共 12 条
  • [1] From the Lugiato-Lefever equation to microresonator-based soliton Kerr frequency combs
    Lugiato, L. A.
    Prati, F.
    Gorodetsky, M. L.
    Kippenberg, T. J.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 376 (2135):
  • [2] Characterizing the dynamics of cavity solitons and frequency combs in the Lugiato-Lefever equation.
    Parra-Rivas, P.
    Gomila, D.
    Gelens, L.
    NONLINEAR OPTICS AND ITS APPLICATIONS IV, 2016, 9894
  • [3] ON THE GENERATION OF STABLE KERR FREQUENCY COMBS IN THE LUGIATO-LEFEVER MODEL OF PERIODIC OPTICAL WAVEGUIDES
    Hakkaev, Sevdzhan
    Stanislavova, Milena
    Stefanov, Atanas G.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2019, 79 (02) : 477 - 505
  • [4] A PRIORI BOUNDS AND GLOBAL BIFURCATION RESULTS FOR FREQUENCY COMBS MODELED BY THE LUGIATO-LEFEVER EQUATION
    Mandel, Rainer
    Reichel, Wolfgang
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2017, 77 (01) : 315 - 345
  • [5] Stability and dynamics of microring combs: elliptic function solutions of the Lugiato-Lefever equation
    Sun, Chang
    Askham, Travis
    Kutz, J. Nathan
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2018, 35 (06) : 1341 - 1353
  • [6] Modeling Kerr frequency combs using the Lugiato-Lefever equation: a characterization of the multistable landscape
    Parra-Rivas, P.
    Gomila, D.
    Matias, M. A.
    Leo, F.
    Coen, S.
    Gelens, L.
    NONLINEAR OPTICS AND ITS APPLICATIONS VIII; AND QUANTUM OPTICS III, 2014, 9136
  • [7] Dynamics of localized and patterned structures in the Lugiato-Lefever equation determine the stability and shape of optical frequency combs
    Parra-Rivas, P.
    Gomila, D.
    Matias, M. A.
    Coen, S.
    Gelens, L.
    PHYSICAL REVIEW A, 2014, 89 (04):
  • [8] Global continua of solutions to the Lugiato-Lefever model for frequency combs obtained by two-mode pumping
    Gasmi, Elias
    Jahnke, Tobias
    Kirn, Michael
    Reichel, Wolfgang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (04):
  • [9] Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators
    Chembo, Yanne K.
    Menyuk, Curtis R.
    PHYSICAL REVIEW A, 2013, 87 (05)
  • [10] Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes
    Godey, Cyril
    Balakireva, Irina V.
    Coillet, Aurelien
    Chembo, Yanne K.
    PHYSICAL REVIEW A, 2014, 89 (06):