ON THE TOTAL MEAN CURVATURE OF A NONRIGID SURFACE

被引:4
|
作者
Alexandrov, V. A. [1 ]
机构
[1] Sobolev Inst Math, Novosibirsk, Russia
关键词
infinitesimal flex; vector field; flux of a vector field; circulation of a vector field; Green's formula; FORMULA;
D O I
10.1007/s11202-009-0087-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the Green's theorem we reduce the variation of the total mean curvature of a smooth surface in the Euclidean 3-space to a line integral of a special vector field, which immediately yields the following well-known theorem: the total mean curvature of a closed smooth surface in the Euclidean 3-space is stationary under an infinitesimal flex.
引用
收藏
页码:757 / 759
页数:3
相关论文
共 50 条
  • [1] On the total mean curvature of a nonrigid surface
    Victor A. Alexandrov
    Siberian Mathematical Journal, 2009, 50 : 757 - 759
  • [2] SURFACE AREA + TOTAL MEAN CURVATURE
    CHAKERIAN, GD
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (03): : 327 - &
  • [4] Special Mean and Total Curvature of a Dual Surface in Isotropic Spaces
    Abdullaaziz, Artykbaev
    Shokirjon, Ismoilov Sherzodbek
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2022, 15 (01): : 1 - 10
  • [5] The Total Mean Curvature of a Complete Noncompact Surface of Nonnegative Curvature in R3
    Leung-Fu Cheung
    Pui-Fai Leung
    Geometriae Dedicata, 1998, 72 : 15 - 17
  • [6] The total mean curvature of a complete noncompact surface of nonnegative curvature in R3
    Cheung, LF
    Leung, PF
    GEOMETRIAE DEDICATA, 1998, 72 (01) : 15 - 17
  • [7] On the Minimization of Total Mean Curvature
    J. Dalphin
    A. Henrot
    S. Masnou
    T. Takahashi
    The Journal of Geometric Analysis, 2016, 26 : 2729 - 2750
  • [8] On the Minimization of Total Mean Curvature
    Dalphin, J.
    Henrot, A.
    Masnou, S.
    Takahashi, T.
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (04) : 2729 - 2750
  • [9] A generalization of the total mean curvature
    Charytanowicz, Katarzyna
    Cieslak, Waldemar
    Mozgawa, Witold
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2021, 146 : 223 - 231