Comparison of velocimetry techniques for turbulent structures in gas-puff imaging data

被引:15
|
作者
Sierchio, J. M. [1 ]
Cziegler, I. [2 ]
Terry, J. L. [1 ]
White, A. E. [1 ]
Zweben, S. J. [3 ]
机构
[1] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Univ Calif San Diego, Ctr Momentum Transport & Flow Org, San Diego, CA 92093 USA
[3] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2016年 / 87卷 / 02期
关键词
SCRAPE-OFF-LAYER; ALCATOR C-MOD; TIME-DELAY ESTIMATION; EDGE TURBULENCE; TOKAMAK; TRANSPORT; NSTX; FLOW;
D O I
10.1063/1.4939672
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Recent analysis of Gas Puff Imaging (GPI) data from Alcator C-Mod found blob velocities with a modified tracking time delay estimation (TDE). These results disagree with velocity analysis performed using direct Fourier methods. In this paper, the two analysis methods are compared. The implementations of these methods are explained, and direct comparisons using the same GPI data sets are presented to highlight the discrepancies in measured velocities. In order to understand the discrepancies, we present a code that generates synthetic sequences of images that mimic features of the experimental GPI images, with user-specified input values for structure (blob) size and velocity. This allows quantitative comparison of the TDE and Fourier analysis methods, which reveals their strengths and weaknesses. We found that the methods agree for structures of any size as long as all structures move at the same velocity and disagree when there is significant nonlinear dispersion or when structures appear to move in opposite directions. Direct Fourier methods used to extract poloidal velocities give incorrect results when there is a significant radial velocity component and are subject to the barber pole effect. Tracking TDE techniques give incorrect velocity measurements when there are features moving at significantly different speeds or in different directions within the same field of view. Finally, we discuss the limitations and appropriate use of each of methods and applications to the relationship between blob size and velocity. (C) 2016 AIP Publishing LLC.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Development of the gas-puff imaging diagnostic in the TEXTOR tokamak
    Shesterikov, I.
    Xu, Y.
    Berte, M.
    Dumortier, P.
    Van Schoor, M.
    Vergote, M.
    Schweer, B.
    Van Oost, G.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (05):
  • [2] Operation of the gas-puff imaging diagnostic in the RFX-mod device
    Agostini, M.
    Cavazzana, R.
    Scarin, P.
    Serianni, G.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (10):
  • [3] Analysis techniques for blob properties from gas puff imaging data
    Offeddu, N.
    Wuethrich, C.
    Han, W.
    Theiler, C.
    Golfinopoulos, T.
    Terry, J. L.
    Marmar, E.
    Ravetta, A.
    Van Parys, G.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (03):
  • [4] COMPARISON OF GAS PUFF IMAGING DATA IN NSTX WITH DEGAS 2 SIMULATIONS
    Cao, B.
    Stotler, D. P.
    Zweben, S. J.
    Bell, M.
    Diallo, A.
    LeBlanc, B.
    FUSION SCIENCE AND TECHNOLOGY, 2013, 64 (01) : 29 - 38
  • [5] Comparison of round and knife-edge-like cathodes on gas-puff implosions
    Valenzuela, J. C.
    Escalona, M.
    Loch, O.
    Veloso, F.
    Diaz, J. P.
    PHYSICAL REVIEW E, 2023, 108 (02)
  • [6] Applying Thomson scattering to diagnosing turbulent density and velocity fluctuations in a gas-puff z-pinch
    Rocco, S. V. R.
    Lavine, E. S.
    Banasek, J. T.
    Potter, W. M.
    Hammer, D. A.
    PHYSICS OF PLASMAS, 2022, 29 (11)
  • [7] A comparison of planar, laser-induced fluorescence, and high-sensitivity interferometry techniques for gas-puff nozzle density measurements
    Jackson, S. L.
    Weber, B. V.
    Mosher, D.
    Phipps, D. G.
    Stephanakis, S. J.
    Commisso, R. J.
    Qi, N.
    Failor, B. H.
    Coleman, P. L.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (10):
  • [8] Nanoscale imaging applications of soft X-ray microscope based on a gas-puff target source
    Wachulak, P. W.
    Torrisi, A.
    Bartnik, A.
    Wegrzynski, L.
    Fok, T.
    Fiedorowicz, H.
    X-RAY MICROSCOPY CONFERENCE 2016 (XRM 2016), 2017, 849
  • [9] Blob properties in L- and H-mode from gas-puff imaging in ASDEX upgrade
    Fuchert, G.
    Birkenmeier, G.
    Carralero, D.
    Lunt, T.
    Manz, P.
    Mueller, H. W.
    Nold, B.
    Ramisch, M.
    Rohde, V.
    Stroth, U.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2014, 56 (12)
  • [10] Code-to-code comparison between FLASH and HYDRA in gas-puff Z-pinch modeling
    Michta, D.
    Tranchant, V.
    Narkis, J.
    Hansen, E. C.
    Adams, M. B. P.
    Moczulski, K.
    Reyes, A.
    Conti, F.
    Beg, F. N.
    Tzeferacos, P.
    PHYSICS OF PLASMAS, 2024, 31 (12)