Generalized Prediction of Unconsciousness during Propofol Anesthesia using 3D Convolutional Neural Networks

被引:0
|
作者
Patlatzoglou, Konstantinos [1 ]
Chennu, Srivas [1 ]
Gosseries, Olivia [2 ,3 ]
Bonhomme, Vincent [4 ]
Wolff, Audrey [2 ,3 ]
Laureys, Steven [2 ,3 ]
机构
[1] Univ Kent, Sch Comp, Chatham, Kent, England
[2] Univ Liege, GIGA Consciousness, Coma Sci Grp, Liege, Belgium
[3] Univ Hosp Liege, Liege, Belgium
[4] CHU Univ Hosp Liege, Dept Anesthesia & Intens Care Med, Liege, Belgium
基金
英国工程与自然科学研究理事会;
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Neuroscience has generated a number of recent advances in the search for the neural correlates of consciousness, but these have yet to find valuable real-world applications. Electroencephalography under anesthesia provides a powerful experimental setup to identify electrophysiological signatures of altered states of consciousness, as well as a testbed for developing systems for automatic diagnosis and prognosis of awareness in clinical settings. In this work, we use deep convolutional neural networks to automatically differentiate sub-anesthetic states and depths of anesthesia, solely from one second of raw EEG signal. Our results with leave-one-participant-out-cross-validation show that behavioral measures, such as the Ramsay score, can be used to learn generalizable neural networks that reliably predict levels of unconsciousness in unseen transitional anesthetic states, as well as in unseen experimental setups and behaviors. Our findings highlight the potential of deep learning to detect progressive changes in anesthetic-induced unconsciousness with higher granularity than behavioral or pharmacological markers. This work has broader significance for identifying generalized patterns of brain activity that index states of consciousness.
引用
收藏
页码:134 / 137
页数:4
相关论文
共 50 条
  • [1] Pose prediction using 3D deep convolutional neural networks
    Wallach, Izhar
    Dzamba, Michael
    Schrodl, Stefan
    Rampasek, Ladislav
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [2] 3D Convolutional Neural Networks for Sperm Motility Prediction
    Goh, Voon Hueh
    Bin As'ari, Muhammad Amir
    Bin Ismail, Lukman Hakim
    2022 2ND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBERNETICS TECHNOLOGY & APPLICATIONS (ICICYTA), 2022, : 174 - 179
  • [3] LipsID Using 3D Convolutional Neural Networks
    Hlavac, Miroslav
    Gruber, Ivan
    Zelezny, Milos
    Karpov, Alexey
    SPEECH AND COMPUTER (SPECOM 2018), 2018, 11096 : 209 - 214
  • [4] Motion Sickness Prediction in Stereoscopic Videos using 3D Convolutional Neural Networks
    Lee, Tae Min
    Yoon, Jong-Chul
    Lee, In-Kwon
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2019, 25 (05) : 1919 - 1927
  • [5] 3D Pose Regression using Convolutional Neural Networks
    Mahendran, Siddharth
    Ali, Haider
    Vidal, Rene
    2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, : 494 - 495
  • [6] Violence Detection using 3D Convolutional Neural Networks
    Su, Jiayi
    Her, Paris
    Clemens, Erik
    Yaz, Edwin
    Schneider, Susan
    Medeiros, Henry
    2022 18TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS 2022), 2022,
  • [7] Video Steganography Using 3D Convolutional Neural Networks
    Abdolmohammadi, Mahdi
    Toroghi, Rahil Mahdian
    Bastanfard, Azam
    PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2020, 1144 : 149 - 161
  • [8] 3D Pose Regression using Convolutional Neural Networks
    Mahendran, Siddharth
    Ali, Haider
    Vidal, Rene
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 2174 - 2182
  • [9] 3D Brain Tumor Segmentation and Survival Prediction Using Ensembles of Convolutional Neural Networks
    Gonzalez, S. Rosas
    Zemmoura, I.
    Tauber, C.
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT II, 2021, 12659 : 241 - 254
  • [10] End-to-end Prediction of Driver Intention using 3D Convolutional Neural Networks
    Gebert, Patrick
    Roitberg, Alina
    Haurilet, Monica
    Stiefelhagen, Rainer
    2019 30TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV19), 2019, : 969 - 974