Microhydration of cytosine and its radical anion:: Cytosine•(H2O)n (n=1-5)

被引:48
|
作者
Kim, Sunghwan [1 ]
Schaefer, Henry F., III [1 ]
机构
[1] Univ Georgia, Ctr Computat Chem, Athens, GA 30602 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2007年 / 126卷 / 06期
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2432123
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Microhydration effects on cytosine and its radical anion have been investigated theoretically, by explicitly considering various structures of cytosine complexes with up to five water molecules. Each successive water molecule (through n=5) is bound by 7-10 kcal mol(-1) to the relevant cytosine complex. The hydration energies are uniformly higher for the analogous anion systems. While the predicted vertical detachment energy (VDE) of the isolated cytosine is only 0.48 eV, it is predicted to increase to 1.27 eV for the lowest-lying pentahydrate of cytosine. The adiabatic electron affinity (AEA) of cytosine was also found to increase from 0.03 to 0.61 eV for the pentahydrate, implying that the cytosine anion, while questionable in the gas phase, is bound in aqueous solution. Both the VDE and AEA values for cytosine are smaller than those of uracil and thymine for a given hydration number. These results are in qualitative agreement with available experimental results from photodetachment-photoelectron spectroscopy studies of Schiedt et al.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Effects of microsolvation on uracil and its radical anion:: Uracil•(H2O)n (n=1-5)
    Kim, Sunghwan
    Schaefer, Henry F., III
    JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (14):
  • [2] Microhydration of the adamantane cation: intracluster proton transfer to solvent in [Ad(H2O)n=1-5]+ for n ≥ 3
    George, Martin Andreas Robert
    Dopfer, Otto
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (19) : 13593 - 13610
  • [3] Infrared Spectroscopy of [H2O-N2O]+-(H2O) n (n=1 and 2): Microhydration Effects on the Hemibond
    Hosoda, Tatsuki
    Kominato, Mizuhiro
    Fujii, Asuka
    JOURNAL OF PHYSICAL CHEMISTRY A, 2025, 129 (12): : 2896 - 2902
  • [4] Do hydroxyl radical-water clusters, OH(H2O)n, n=1-5, exist in the atmosphere?
    Allodi, Marco A.
    Dunn, Meghan E.
    Livada, Jovan
    Kirschner, Karl N.
    Shields, George C.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (49): : 13283 - 13289
  • [5] Ab initio study of superoxide anion-water clusters O-2 (H2O)n=1-5
    Lee, HM
    Kim, KS
    MOLECULAR PHYSICS, 2002, 100 (06) : 875 - 879
  • [6] Vibrational spectroscopy of the Cl-(H2O)n anionic clusters, n=1-5
    Choi, JH
    Kuwata, KT
    Cao, YB
    Okumura, M
    JOURNAL OF PHYSICAL CHEMISTRY A, 1998, 102 (03): : 503 - 507
  • [7] Structures, energetics, and spectra of OH-(H2O)n and SH-(H2O)n clusters, n=1-5:: Ab initio study
    Masamura, M
    JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (11): : 5257 - 5263
  • [8] Structures and stability of hydrated clusters of hydrogen chloride, HCl(H2O)n, n=1-5
    Re, S
    Osamura, Y
    Suzuki, Y
    Schaefer, HF
    JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (03): : 973 - 977
  • [9] STUDIES ON INTERMOLECULAR COMPLEX-FORMATION, CRYSTAL-STRUCTURES OF THYMINE -N,N-DIETHYLMELAMINE H2O AND CYTOSINE - RESORCINIC ACID H2O
    TAMURA, C
    HATA, T
    SATO, S
    ACTA CRYSTALLOGRAPHICA SECTION A, 1972, 28 : S46 - S46
  • [10] Microsolvation pattern of the hydrated radical anion of uracil:: U-(H2O)n (n=3-5)
    Bao, Xiaoguang
    Liang, Guoming
    Wong, Ning-Bew
    Gu, Jiande
    JOURNAL OF PHYSICAL CHEMISTRY A, 2007, 111 (04): : 666 - 672