Combining discrete and probabilistic methods improves accuracy in sequence modeling

被引:0
|
作者
Gudjonsson, L [1 ]
Laurio, K [1 ]
Olsson, B [1 ]
机构
[1] Univ Skovde, Dept Comp Sci, S-54128 Skovde, Sweden
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Current approaches to the problem of modeling protein sequence families use either discrete or probabilistic methods. In this paper we present an approach for combining these two types of methods to derive hybrid models. We show that hybrid models - using discrete patterns for conserved regions and probabilistic hidden Markov models for variable regions - give increased classification accuracy when compared to pure discrete or probabilistic models.
引用
收藏
页码:A790 / A793
页数:4
相关论文
共 50 条
  • [1] Combining probabilistic alignments with read pair information improves accuracy of split-alignments
    Shrestha, Anish M. S.
    Yoshikawa, Naruki
    Asai, Kiyoshi
    [J]. BIOINFORMATICS, 2018, 34 (21) : 3631 - 3637
  • [2] Combining mechanistic and probabilistic methods
    Gremm, O
    [J]. ATW-INTERNATIONALE ZEITSCHRIFT FUR KERNENERGIE, 1999, 44 (10): : 507 - 507
  • [3] On the accuracy of various probabilistic methods
    Fox, EP
    Reh, S
    [J]. COLLECTION OF THE 41ST AIAA/ASME/ASCE/AHS/ASC STRUCTURES, STRUCTURAL DYNAMICS, AND MATERIALS CONFERENCE AND EXHIBIT, VOL 3, 2000, : 71 - 79
  • [4] On the accuracy of homology modeling and sequence alignment methods applied to membrane proteins
    Forrest, Lucy R.
    Tang, Christopher L.
    Honig, Barry
    [J]. BIOPHYSICAL JOURNAL, 2006, 91 (02) : 508 - 517
  • [5] Algebraic and probabilistic methods in discrete mathematics
    Alon, N
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, : 455 - 470
  • [6] Combining Discrete and Neural Features for Sequence Labeling
    Yang, Jie
    Teng, Zhiyang
    Zhang, Meishan
    Zhang, Yue
    [J]. COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, (CICLING 2016), PT I, 2018, 9623 : 140 - 154
  • [7] Tensor Networks for Probabilistic Sequence Modeling
    Miller, Jacob
    Rabusseau, Guillaume
    Terilla, John
    [J]. 24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [8] Combining IVUS and NIRS improves accuracy of fibroatheroma detection
    Karina Huynh
    [J]. Nature Reviews Cardiology, 2015, 12 (3) : 130 - 130
  • [9] Combining sparseness and smoothness improves classification accuracy and interpretability
    de Brecht, Matthew
    Yamagishi, Noriko
    [J]. NEUROIMAGE, 2012, 60 (02) : 1550 - 1561
  • [10] Probabilistic methods for discrete nonlinear Schrodinger equations
    Chatterjee, Sourav
    Kirkpatrick, Kay
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (05) : 727 - 757