A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior

被引:547
|
作者
Li, Zhiming [1 ]
Tasan, Cemal Cem [2 ]
Pradeep, Konda Gokuldoss [1 ,3 ]
Raabe, Dierk [1 ]
机构
[1] Max Planck Inst Eisenforsch GmbH, Max Planck Str 1, D-40237 Dusseldorf, Germany
[2] MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Rhein Westfal TH Aachen, Mat Chem, Kopernikusstr 10, D-52074 Aachen, Germany
基金
欧洲研究理事会;
关键词
High-entropy alloy; Dual phase; Phase transformations; Grain refining; Mechanical properties; ATOM-PROBE TOMOGRAPHY; MECHANICAL-PROPERTIES; HIGH-STRENGTH; SINGLE-PHASE; AUSTENITE; TRANSFORMATION; DESIGN; STEEL; SCALE; DISLOCATION;
D O I
10.1016/j.actamat.2017.03.069
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a systematic microstructure oriented mechanical property investigation for a newly developed class of transformation-induced plasticity-assisted dual-phase high-entropy alloys (TRIP-DP-HEAs) with varying grain sizes and phase fractions. The DP-HEAs in both, as-homogenized and recrystallized states consist of a face-centered cubic (FCC) matrix containing a high-density of stacking faults and a laminate hexagonal close-packed (HCP) phase. No elemental segregation was observed in grain interiors or at interfaces even down to near-atomic resolution, as confirmed by energy-dispersive X-ray spectroscopy and atom probe tomography. The strength-ductility combinations of the recrystallized DP-HEAs (Fe50Mn30Co10Cr10) with varying FCC grain sizes and HCP phase fractions prior to deformation are superior to those of the recrystallized equiatomic single-phase Cantor reference HEA (Fe20Mn20Ni20-Co20Cr20). The multiple deformation micro-mechanisms (including strain-induced transformation from FCC to HCP phase) and dynamic strain partitioning behavior among the two phases are revealed in detail. Both, strength and ductility of the DP-HEAs increase with decreasing the average FCC matrix grain size and increasing the HCP phase fraction prior to loading (in the range of 10-35%) due to the resulting enhanced stability of the FCC matrix. These insights are used to project some future directions for designing advanced TRIP-HEAs through the adjustment of the matrix phase's stability by alloy tuning and grain size effects. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:323 / 335
页数:13
相关论文
共 50 条
  • [1] Cryogenic mechanical behavior of a TRIP-assisted dual-phase high-entropy alloy
    Li, Dongyue
    Li, Zhiming
    Xie, Lu
    Zhang, Yong
    Wang, Wenrui
    NANO RESEARCH, 2022, 15 (06) : 4859 - 4866
  • [2] Cryogenic mechanical behavior of a TRIP-assisted dual-phase high-entropy alloy
    Dongyue Li
    Zhiming Li
    Lu Xie
    Yong Zhang
    Wenrui Wang
    Nano Research, 2022, 15 : 4859 - 4866
  • [3] Strain Rate Sensitivity of a TRIP-Assisted Dual-Phase High-Entropy Alloy
    Basu, Silva
    Li, Zhiming
    Pradeep, K. G.
    Raabe, Dierk
    FRONTIERS IN MATERIALS, 2018, 5
  • [4] Dependence of Mechanical Properties and Deformation Behavior of TRIP-FeMnCoCrAl Dual-phase High-entropy Alloy on Grain Size and Strain Rate
    Li, Jie
    Zhang, Bo
    Niu, Lichong
    Zhang, Minghe
    Feng, Yunli
    ISIJ INTERNATIONAL, 2024, 64 (06) : 1067 - 1077
  • [5] Effect of grain boundary engineering on grain boundary character distribution and deformation behavior of a TRIP-assisted high-entropy alloy
    You, Z. Y.
    Tang, Z. Y.
    Li, J. P.
    Chu, F. B.
    Ding, H.
    Misra, R. D. K.
    MATERIALS CHARACTERIZATION, 2023, 205
  • [6] Revealing cracking behavior of phase and grain boundaries in dual-phase high-entropy alloy at elevated temperatures
    Liu, Linxiang
    Wu, Qingfeng
    Zhu, Jiaxi
    Bai, Xiaoyu
    Jia, Yuhao
    He, Feng
    Li, Junjie
    Wang, Jincheng
    Wang, Zhijun
    MATERIALS CHARACTERIZATION, 2025, 220
  • [7] Grain growth kinetics, phase evolution during annealing and strain rate sensitivity of TRIP-assisted, dual-phase, non-equiatomic high entropy alloy
    Meena, Neelam
    Prabhu, N.
    Rao, A. G.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 903
  • [8] Deformation mechanisms in an additively manufactured dual-phase eutectic high-entropy alloy
    Ren, Jie
    Wu, Margaret
    Li, Chenyang
    Guan, Shuai
    Dong, Jiaqi
    Forien, Jean-Baptiste
    Li, Tianyi
    Shanks, Katherine S.
    Yu, Dunji
    Chen, Yan
    An, Ke
    Xie, Kelvin Y.
    Chen, Wei
    Voisin, Thomas
    Chen, Wen
    ACTA MATERIALIA, 2023, 257
  • [9] Ratcheting behavior of non-equiatomic TRIP dual-phase high entropy alloy
    Bahadur, Fateh
    Sadhasivam, M.
    Pradeep, K.G.
    Gurao, N.P.
    Biswas, Krishanu
    Materialia, 2022, 24
  • [10] Ratcheting behavior of non-equiatomic TRIP dual-phase high entropy alloy
    Bahadur, Fateh
    Sadhasivam, M.
    Pradeep, K. G.
    Gurao, N. P.
    Biswas, Krishanu
    MATERIALIA, 2022, 24