Two-dimensional steady edge waves. Part I: Periodic waves

被引:10
|
作者
Ehrnstroem, Mats [1 ]
Escher, Joachim [1 ]
Matioc, Bogdan-Vasile [1 ]
机构
[1] Leibniz Univ Hannover, Inst Angew Math, D-30167 Hannover, Germany
关键词
Existence; Uniqueness; A priori estimates; Water waves; Edge waves; Periodic solutions; DEEP-WATER WAVES; BOUNDARY-PROBLEM; CAMASSA-HOLM; SYMMETRY; TRAJECTORIES; EXISTENCE; BREAKING;
D O I
10.1016/j.wavemoti.2009.06.002
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We prove existence and uniqueness for two-dimensional steady water waves propagating along the beach. For small periodic shoreline data, global solutions vanishing in the seaward direction are found. In addition, we prove a priori properties of solutions, well-adapted to the physical background. (C) 2009 Elsevier B. V. All rights reserved.
引用
收藏
页码:363 / 371
页数:9
相关论文
共 50 条
  • [1] Two-dimensional steady edge waves. Part II: Solitary waves
    Ehrnstroem, Mats
    Escher, Joachim
    Matioc, Bogdan-Vasile
    [J]. WAVE MOTION, 2009, 46 (06) : 372 - 378
  • [2] Exact and approximate solutions for focusing of two-dimensional waves. I. Theory
    Stamnes, JJ
    Eide, HA
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1998, 15 (05): : 1285 - 1291
  • [3] A new model of shoaling and breaking waves. Part 2. Run-up and two-dimensional waves
    Richard, G. L.
    Duran, A.
    Fabreges, B.
    [J]. JOURNAL OF FLUID MECHANICS, 2019, 867 : 146 - 194
  • [4] Interaction of Waves in Two-dimensional Steady Isentropic Flow
    扈志明
    张同
    [J]. Tsinghua Science and Technology, 1997, (03) : 109 - 113
  • [5] Elementary Waves of Two-dimensional Steady Isentropic Flow
    扈志明
    张同
    [J]. Tsinghua Science and Technology, 1997, (03) : 103 - 108
  • [6] Two-dimensional generalized solitary waves and periodic waves under an ice sheet
    Vanden-Broeck, Jean-Marc
    Parau, Emilian I.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1947): : 2957 - 2972
  • [7] ON THE SYMMETRY OF SPATIALLY PERIODIC TWO-DIMENSIONAL WATER WAVES
    Kogelbauer, Florian
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (12): : 7057 - 7061
  • [8] Standing waves on two-dimensional periodic dielectric waveguides
    Hu, Zhen
    Lu, Ya Yan
    [J]. JOURNAL OF OPTICS, 2015, 17 (06)
  • [9] Periodic components in Love waves.
    Labrouste, Y
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1933, 197 : 344 - 346
  • [10] The Dissipation of Trapped Lee Waves. Part I: Leakage of Inviscid Waves into the Stratosphere
    Durran, Dale R.
    Hills, Matthew O. G.
    Blossey, Peter N.
    [J]. JOURNAL OF THE ATMOSPHERIC SCIENCES, 2015, 72 (04) : 1569 - 1584