Periodic solutions for wave equations with variable coefficients with nonlinear localized damping

被引:2
|
作者
Zhang, Zhifei [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Dept Math & Stat, Wuhan 430074, Peoples R China
[2] Wuhan Univ, Dept Math & Stat, Wuhan 430072, Peoples R China
关键词
Periodic solution; Wave equation with variable coefficients; Localized dissipation;
D O I
10.1016/j.jmaa.2009.09.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the existence of periodic solutions to the wave equation with variable coefficients u(tt) - div(A(x)del u) + p(x, u(t)) = f (x, t) with Dirichlet boundary condition. Here rho(x, nu) is a function like rho(x, nu) = a(x)g(nu) with g'(nu) >= 0 where a(x) is nonnegative, being positive only in a neighborhood of a part of the domain. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:549 / 558
页数:10
相关论文
共 50 条