Potato NAC Transcription Factor StNAC053 Enhances Salt and Drought Tolerance in Transgenic Arabidopsis

被引:44
|
作者
Wang, Qi [1 ,2 ]
Guo, Cun [1 ,2 ]
Li, Zhiyuan [1 ,2 ]
Sun, Jinhao [1 ,2 ]
Deng, Zhichao [1 ,2 ]
Wen, Lichao [1 ,2 ]
Li, Xiaoxu [1 ]
Guo, Yongfeng [1 ]
机构
[1] Chinese Acad Agr Sci, Tobacco Res Inst, Key Lab Tobacco Gene Resources, Qingdao 266101, Peoples R China
[2] Chinese Acad Agr Sci, Grad Sch, Beijing 100081, Peoples R China
关键词
potato; NAC transcription factor; ABA; abiotic stress;
D O I
10.3390/ijms22052568
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The NAC (NAM, ATAF1/2, and CUC2) transcription factors comprise one of the largest transcription factor families in plants and play important roles in stress responses. However, little is known about the functions of potato NAC family members. Here we report the cloning of a potato NAC transcription factor gene StNAC053, which was significantly upregulated after salt, drought, and abscisic acid treatments. Furthermore, the StNAC053-GFP fusion protein was found to be located in the nucleus and had a C-terminal transactivation domain, implying that StNAC053 may function as a transcriptional activator in potato. Notably, Arabidopsis plants overexpressing StNAC053 displayed lower seed germination rates compared to wild-type under exogenous ABA treatment. In addition, the StNAC053 overexpression Arabidopsis lines displayed significantly increased tolerance to salt and drought stress treatments. Moreover, the StNAC053-OE lines were found to have higher activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) under multiple stress treatments. Interestingly, the expression levels of several stress-related genes including COR15A, DREB1A, ERD11, RAB18, ERF5, and KAT2, were significantly upregulated in these StNAC053-overexpressing lines. Taken together, overexpression of the stress-inducible StNAC053 gene could enhance the tolerances to both salt and drought stress treatments in Arabidopsis, likely by upregulating stress-related genes.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [1] TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis
    Huang, Quanjun
    Wang, Yan
    Li, Bin
    Chang, Junli
    Chen, Mingjie
    Li, Kexiu
    Yang, Guangxiao
    He, Guangyuan
    [J]. BMC PLANT BIOLOGY, 2015, 15
  • [2] FtNAC31, a Tartary buckwheat NAC transcription factor, enhances salt and drought tolerance in transgenic Arabidopsis
    Zhao, Jia-li
    Wu, Qiong
    Wu, Hua-la
    Wang, An-hu
    Wang, Xiao-li
    Li, Cheng-lei
    Zhao, Hai-xia
    Wu, Qi
    [J]. PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2022, 191 : 20 - 33
  • [3] TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis
    Quanjun Huang
    Yan Wang
    Bin Li
    Junli Chang
    Mingjie Chen
    Kexiu Li
    Guangxiao Yang
    Guangyuan He
    [J]. BMC Plant Biology, 15
  • [4] Overexpression of a NAC transcription factor enhances rice drought and salt tolerance
    Zheng, Xingnan
    Chen, Bo
    Lu, Guojun
    Han, Bin
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2009, 379 (04) : 985 - 989
  • [5] A novel Miscanthus NAC transcription factor MlNAC10 enhances drought and salinity tolerance in transgenic Arabidopsis
    He, Kang
    Zhao, Xun
    Chi, Xiaoyuan
    Wang, Yiping
    Jia, Chunlin
    Zhang, Hongpeng
    Zhou, Gongke
    Hu, Ruibo
    [J]. JOURNAL OF PLANT PHYSIOLOGY, 2019, 233 : 84 - 93
  • [6] Peanut NAC Transcription Factor AhNAPa Negatively Regulates Salt Tolerance in Transgenic Arabidopsis
    Yuan, Cuiling
    Miao, Haocui
    Sun, Quanxi
    Shan, Shihua
    [J]. AGRONOMY-BASEL, 2024, 14 (07):
  • [7] The NAC-type transcription factor CaNAC46 regulates the salt and drought tolerance of transgenic Arabidopsis thaliana
    Ma, Jing
    Wang, Li-yue
    Dai, Jia-xi
    Wang, Ying
    Lin, Duo
    [J]. BMC PLANT BIOLOGY, 2021, 21 (01)
  • [8] The NAC-type transcription factor CaNAC46 regulates the salt and drought tolerance of transgenic Arabidopsis thaliana
    Jing Ma
    Li-yue Wang
    Jia-xi Dai
    Ying Wang
    Duo Lin
    [J]. BMC Plant Biology, 21
  • [9] An apple (Malus domestica) NAC transcription factor enhances drought tolerance in transgenic apple plants
    Jia, Dongfeng
    Jiang, Qi
    van Nocker, Steven
    Gong, Xiaoqing
    Ma, Fengwang
    [J]. PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2019, 139 : 504 - 512
  • [10] Tamarix hispida NAC Transcription Factor ThNAC4 Confers Salt and Drought Stress Tolerance to Transgenic Tamarix and Arabidopsis
    Mijiti, Meiheriguli
    Wang, Yucheng
    Wang, Liuqiang
    Habuding, Xugela
    [J]. PLANTS-BASEL, 2022, 11 (19):