Identifying heteroclinic connections using artificial neural networks

被引:8
|
作者
De Smet, Stijn [1 ]
Scheeres, Daniel J. [1 ]
机构
[1] Univ Colorado, Dept Aerosp Engn, 429 UCB, Boulder, CO 80309 USA
关键词
Heteroclinic connections; Artificial neural networks; Lyapunov; ALGORITHM;
D O I
10.1016/j.actaastro.2019.05.012
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper demonstrates the usage of artificial neural networks (ANN) to identify heteroclinic connections in astrodynamical systems. The ANN architecture is applied to find heteroclinic connections, or lack thereof, in the Earth-Moon circular restricted three body problem from L-1 to L-2 Lyapunov orbits for Jacobi values between 3.07 and 3.17. The predicted heteroclinic connections are within 0.1-1% of the arclength along the periodic orbit from their true locations.
引用
收藏
页码:192 / 199
页数:8
相关论文
共 50 条
  • [1] Identifying Dyslexic Students by Using Artificial Neural Networks
    Kohli, Maitrei
    Prasad, T. V.
    [J]. WORLD CONGRESS ON ENGINEERING, WCE 2010, VOL I, 2010, : 118 - 121
  • [2] Identifying olive (Olea europaea) cultivars using artificial neural networks
    Mancuso, S
    Nicese, FP
    [J]. JOURNAL OF THE AMERICAN SOCIETY FOR HORTICULTURAL SCIENCE, 1999, 124 (05) : 527 - 531
  • [3] Identifying "Promising" Internet Business Applications Using Artificial Neural Networks
    Kohli, Maitrei
    [J]. PROCEEDINGS OF THE 8TH WSEAS INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING AND DATA BASES, 2009, : 471 - +
  • [4] Identifying nonclassicality from experimental data using artificial neural networks
    Gebhart, Valentin
    Bohmann, Martin
    Weiher, Karsten
    Biagi, Nicola
    Zavatta, Alessandro
    Bellini, Marco
    Agudelo, Elizabeth
    [J]. PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [5] Identifying health inequalities using artificial neural networks (WHO data)
    Yang, ZR
    Harrison, RG
    Lu, WP
    [J]. IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL IV, 2000, : 113 - 118
  • [6] Identifying Potato Varieties Using Machine Vision and Artificial Neural Networks
    Azizi, Afshin
    Abbaspour-Gilandeh, Yousef
    Nooshyar, Mahdi
    Afkari-Sayah, Amirhosein
    [J]. INTERNATIONAL JOURNAL OF FOOD PROPERTIES, 2016, 19 (03) : 618 - 635
  • [7] Identifying playing talent in professional football using artificial neural networks
    Barron, Donald
    Ball, Graham
    Robins, Matthew
    Sunderland, Caroline
    [J]. JOURNAL OF SPORTS SCIENCES, 2020, 38 (11-12) : 1211 - 1220
  • [8] Identifying quantum phase transitions using artificial neural networks on experimental data
    Rem, Benno S.
    Kaeming, Niklas
    Tarnowski, Matthias
    Asteria, Luca
    Flaeschner, Nick
    Becker, Christoph
    Sengstockl, Klaus
    Weitenberg, Christof
    [J]. NATURE PHYSICS, 2019, 15 (09) : 917 - +
  • [9] Identifying Good-Dice-in-Bad-Neighborhoods Using Artificial Neural Networks
    Yang, Cheng-Hao
    Yen, Chia-Heng
    Wang, Ting-Rui
    Chen, Chun-Teng
    Chern, Mason
    Chen, Ying-Yen
    Lee, Jih-Nung
    Kao, Shu-Yi
    Wu, Kai-Chiang
    Chao, Mango Chia-Tso
    [J]. 2021 IEEE 39TH VLSI TEST SYMPOSIUM (VTS), 2021,
  • [10] Identifying quantum phase transitions using artificial neural networks on experimental data
    Benno S. Rem
    Niklas Käming
    Matthias Tarnowski
    Luca Asteria
    Nick Fläschner
    Christoph Becker
    Klaus Sengstock
    Christof Weitenberg
    [J]. Nature Physics, 2019, 15 : 917 - 920