Cattail fiber-derived hierarchical porous carbon materials for high-performance supercapacitors

被引:26
|
作者
Song, Ge-Ge [1 ]
Yang, Jie [1 ]
Liu, Ke-Xin [1 ]
Qin, Zao [1 ]
Zheng, Xiu-Cheng [1 ,2 ]
机构
[1] Zhengzhou Univ, Coll Chem, Green Catalysis Ctr, Zhengzhou 450001, Peoples R China
[2] Nankai Univ, Coll Chem, Key Lab Adv Energy Mat Chem, Minist Educ, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Cattail fibers; Potassium carbonate; Chemical activation; Hierarchical porous carbon; Supercapacitive performance; CAPACITANCE; NANOTUBES; WASTE; OXIDE; HUSK; NAOH;
D O I
10.1016/j.diamond.2020.108162
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Biomass-derived porous carbon materials are very promising in the fields of energy storage and conversion, owing to their fascinating features, such as superior renewability, low cost and environmental friendliness. Correspondingly, developing a safe and energy effective strategy for fabricating advanced carbon from biomass has drawn tremendous attention. In the present work, cattail fiber-derived porous carbon is prepared with an impregnation-single stage calcination method by using K2CO3 as the activating agent. The dosage of K2CO3 and calcination temperature are optimized according to the supercapacitive performance of the corresponding carbon materials. The optimal CPC-2-600, which is fabricated with a mass ratio of 2:1 for K2CO3 to cattail fibers and calcined at 600 degrees C, possesses much larger specific surface area and more abundant micropores and mesopores than the pristine carbon fabricated without using K2CO3 (denoted as CPC-0-600), leading to an improved supercapacitive behavior. As the electrode material for the three-electrode supercapacitors, CPC-2-600 displays a specific capacitance of 273.8 F g(-1) at 1.0 A g(-1) in 6.0 M KOH solution, as well superior rate capability. Moreover, the CPC-2-600-based symmetrical configuration delivers an energy density of 27.44 Wh kg(-1) at 400 W kg(-1). Even the power density is up to 8000 W kg(-1), the energy density is still maintained as high as 16.67 Wh kg(-1), which is much superior to CPC-0-600. Also, the symmetrical configuration exhibits good cycling stability. This work offers a hierarchical porous carbon from cattail fibers for high-performance supercapacitors. Moreover, the mild, effective and low-cost fabrication strategy is also suitable for preparing other biomass-based carbon, which is promising in heterogeneous catalysis, energy storage and conversion devices, and so on.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Preparation of Cotton Fiber-derived Porous-carbon Materials and Their Application as High-performance Supercapacitors
    Wang, Shuhua
    Gao, Yindong
    JOURNAL OF NATURAL FIBERS, 2022, 19 (13) : 7257 - 7264
  • [2] Hierarchical porous carbon materials derived from petroleum pitch for high-performance supercapacitors
    Abudu, Patiman
    Wang, Luxiang
    Xu, Mengjiao
    Jia, Dianzeng
    Wang, Xingchao
    Jia, Lixia
    CHEMICAL PHYSICS LETTERS, 2018, 702 : 1 - 7
  • [3] Lignin-derived hierarchical porous carbon for high-performance supercapacitors
    Zhen-zhen Chang
    Bao-jun Yu
    Cheng-yang Wang
    Journal of Solid State Electrochemistry, 2016, 20 : 1405 - 1412
  • [4] Lignin-derived hierarchical porous carbon for high-performance supercapacitors
    Chang, Zhen-zhen
    Yu, Bao-jun
    Wang, Cheng-yang
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2016, 20 (05) : 1405 - 1412
  • [5] Cellulose-derived hierarchical porous carbon for high-performance flexible supercapacitors
    Wang, Chao
    Wang, Xianfen
    Lu, Hao
    Li, Hongliang
    Zhao, X. S.
    CARBON, 2018, 140 : 139 - 147
  • [6] Facile fabrication of carbon materials with hierarchical porous structure for high-performance supercapacitors
    Li, Pan
    Feng, Cui-Ning
    Li, Hong-Ping
    Zhang, Xiao-Li
    Zheng, Xiu-Cheng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 851
  • [7] Fabrication of Hierarchical Porous Carbon Nanoflakes for High-Performance Supercapacitors
    Yao, Yamin
    Zhang, Yunqiang
    Li, Li
    Wang, Shulan
    Dou, Shixue
    Liu, Xuan
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (40) : 34944 - 34953
  • [8] Hierarchical porous graphitic carbon for high-performance supercapacitors at high temperature
    Chen, Chong
    Yu, Dengfeng
    Zhao, Gongyuan
    Sun, Lei
    Sun, Yinyong
    Leng, Kunyue
    Yu, Miao
    Sun, Ye
    RSC ADVANCES, 2017, 7 (55): : 34488 - 34496
  • [9] Hierarchical porous carbon derived from coal-based carbon foam for high-performance supercapacitors
    Yang, Nuannuan
    Ji, Lei
    Fu, Haichao
    Shen, Yanfeng
    Wang, Meijun
    Liu, Jinghai
    Chang, Liping
    Lv, Yongkang
    CHINESE CHEMICAL LETTERS, 2022, 33 (08) : 3961 - 3967
  • [10] Hierarchical porous carbon derived from coal-based carbon foam for high-performance supercapacitors
    Nuannuan Yang
    Lei Ji
    Haichao Fu
    Yanfeng Shen
    Meijun Wang
    Jinghai Liu
    Liping Chang
    Yongkang Lv
    Chinese Chemical Letters, 2022, 33 (08) : 3961 - 3967