Resolving ambiguities in the semantic interpretation of natural language questions

被引:0
|
作者
Linckels, Serge
Meinel, Christoph
机构
[1] Univ Potsdam, HPI, D-14440 Potsdam, Germany
[2] LIASIT, L-1511 Luxembourg, Luxembourg
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Our project is about an e-librarian service which is able to retrieve multimedia resources from a knowledge base in a more efficient way than by browsing through an index or by using a simple keyword search. The user can formulate a complete question in natural language and submit it to the semantic search engine. However, natural language is not a formal language and thus can cause ambiguities in the interpretation of the sentence. Normally, the correct interpretation can only be retrieved accurately by putting each word in the context of a complete question. In this paper we present an algorithm which is able to resolve ambiguities in the semantic interpretation of NL questions. As the required input, it takes a linguistic pre-processed question and translates it into a logical and unambiguous form, i.e. ALC terminology. The focus function resolves ambiguities in the question; it returns the best possible interpretation for a given word in the context of the complete user question. Finally, pertinent documents can be retrieved from the knowledge base. We report on a benchmark test with a prototype that confirms the reliability of our algorithm. From 229 different user questions, the system returned the right answer for 97% of the questions, and only one answer, i.e. the best one, for nearly half of the questions.
引用
收藏
页码:612 / 619
页数:8
相关论文
共 50 条