Euclidean path integral formalism in deformed space with minimum measurable length

被引:5
|
作者
Bernardo, Reginald Christian S. [1 ]
Esguerra, Jose Perico H. [1 ]
机构
[1] Univ Philippines Diliman, Natl Inst Phys, Theoret Phys Grp, Quezon City 1101, Philippines
关键词
GENERALIZED UNCERTAINTY PRINCIPLE; QUANTUM-GRAVITY; DYNAMICS;
D O I
10.1063/1.4979797
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study time-evolution at the quantum level by developing the Euclidean path-integral approach for the general case where there exists a minimum measurable length. We derive an expression for the momentum-space propagator which turns out to be consistent with recently developed beta-canonical transformation. We also construct the propagator for maximal localization which corresponds to the amplitude that a state which is maximally localized at location xi' propagates to a state which is maximally localized at location xi '' in a given time. Our expression for the momentum-space propagator and the propagator for maximal localization is valid for any form of time-independent Hamiltonian. The nonrelativistic free particle, particle in a linear potential, and the harmonic oscillator are discussed as examples. Published by AIP Publishing.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Integral flow decomposition with minimum longest path length
    Pienkosz, Krzysztof
    Koltys, Kamil
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2015, 247 (02) : 414 - 420
  • [2] Computing a Hamiltonian Path of Minimum Euclidean Length Inside a Simple Polygon
    A. García
    P. Jodrá
    J. Tejel
    Algorithmica, 2013, 65 : 481 - 497
  • [3] Computing a Hamiltonian Path of Minimum Euclidean Length Inside a Simple Polygon
    Garcia, A.
    Jodra, P.
    Tejel, J.
    ALGORITHMICA, 2013, 65 (03) : 481 - 497
  • [4] EFFECTIVE LAGRANGIAN OF PATH INTEGRAL QUANTIZATION FORMALISM IN CURVED SPACE
    阮图南
    范洪义
    尹鸿钧
    Science China Mathematics, 1981, (05) : 618 - 625
  • [5] EFFECTIVE LAGRANGIAN OF PATH INTEGRAL QUANTIZATION FORMALISM IN CURVED SPACE
    RUAN, TN
    FAN, HY
    YIN, HJ
    SCIENTIA SINICA, 1981, 24 (05): : 618 - 625
  • [6] EFFECTIVE LAGRANGIAN OF PATH INTEGRAL QUANTIZATION FORMALISM IN CURVED SPACE
    阮图南
    范洪义
    尹鸿钧
    ScienceinChina,SerA., 1981, Ser.A.1981 (05) : 618 - 625
  • [7] GEODESIC OPTICS VIA PATH INTEGRAL FORMALISM - A MODIFIED PRINCIPLE OF MINIMUM TIME
    LINARES, J
    MORETTI, P
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1990, 105 (04): : 419 - 428
  • [8] AN INTEGRAL-REPRESENTATION ON THE PATH SPACE FOR SCATTERING LENGTH
    TAKAHASHI, Y
    OSAKA JOURNAL OF MATHEMATICS, 1990, 27 (02) : 373 - 379
  • [9] Path integral in position-deformed Heisenberg algebra with maximal length uncertainty
    Lawson, Latevi M.
    Osei, Prince K.
    Sodoga, Komi
    Soglohu, Fred
    ANNALS OF PHYSICS, 2023, 457
  • [10] CONVERGENT NETWORK APPROXIMATION FOR THE CONTINUOUS EUCLIDEAN LENGTH CONSTRAINED MINIMUM COST PATH PROBLEM
    Muhandiramge, Ranga
    Boland, Natashia
    Wang, Song
    SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (01) : 54 - 77