Fault detection and classification with feature representation based on deep residual convolutional neural network

被引:11
|
作者
Ren, Xuemei [1 ]
Zou, Yiping [1 ]
Zhang, Zheng [1 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
chemical processes; convolutional neural network; fault detection and classification; feature representation; PRINCIPAL COMPONENT ANALYSIS;
D O I
10.1002/cem.3170
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a novel fault detection and classification method via deep residual convolutional neural network (DRCNN). The DRCNN captures the deep process features represented by convolutional layers from local to global. Unlike traditional methods, this feature representation can extract the deep fault information and learn the latent fault patterns. Besides, a data preprocessing approach is also proposed to transform the shape of original data into the shape available for convolutional neural network. Finally, experiments based on the data set of Tennessee Eastman process (TEP), a chemical industrial process benchmark, show that the proposed method achieves superior fault detection and better classification performance compared with the state-of-the-art methods.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Deep convolutional neural network based planet bearing fault classification
    Zhao, Dezun
    Wang, Tianyang
    Chu, Fulei
    [J]. COMPUTERS IN INDUSTRY, 2019, 107 : 59 - 66
  • [2] A deep residual convolutional neural network for mineral classification
    Agrawal, Neelam
    Govil, Himanshu
    [J]. ADVANCES IN SPACE RESEARCH, 2023, 71 (08) : 3186 - 3202
  • [3] Fault Detection of Planetary Gearboxes Based on Deep Convolutional Neural Network
    Cheng, Zhe
    Hu, Niaoqing
    Chen, Jiageng
    Gao, Ming
    Zhu, Qifeng
    [J]. 2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [4] Morphological Classification of Neurons Based Deep Residual Multiscale Convolutional Neural Network
    He, Fuyun
    Wei, Yan
    Qian, Youwei
    [J]. 2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 481 - 485
  • [5] Deep convolutional neural network for glaucoma detection based on image classification
    Gobinath, C.
    Gopinath, M. P.
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2024, 46 (01) : 1957 - 1971
  • [6] FaultNet: A Deep Convolutional Neural Network for Bearing Fault Classification
    Magar, Rishikesh
    Ghule, Lalit
    Li, Junhan
    Zhao, Yang
    Farimani, Amir Barati
    [J]. IEEE ACCESS, 2021, 9 : 25189 - 25199
  • [7] Bearing Fault Diagnosis with a Feature Fusion Method Based on an Ensemble Convolutional Neural Network and Deep Neural Network
    Li, Hongmei
    Huang, Jinying
    Ji, Shuwei
    [J]. SENSORS, 2019, 19 (09)
  • [8] Knee Osteoarthritis Detection Using Deep Feature Based on Convolutional Neural Network
    Zebari, Dilovan Asaad
    Sadiq, Shereen Saleem
    Sulaiman, Dawlat Mustafa
    [J]. PROCEEDING OF THE 2ND 2022 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (CSASE 2022), 2022, : 259 - 264
  • [9] A Deep Double-Convolutional Neural Network-Based Fault Detection
    Wang, Xiuli
    Li, Zhongxin
    Liang, Jing
    Li, Yang
    [J]. 2023 IEEE 2ND INDUSTRIAL ELECTRONICS SOCIETY ANNUAL ON-LINE CONFERENCE, ONCON, 2023,
  • [10] Fault Text Classification Based on Convolutional Neural Network
    Wang, Lixia
    Zhang, Botao
    [J]. 2020 IEEE 7TH INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND APPLICATIONS (ICIEA 2020), 2020, : 937 - 941