Audio music genre classification using different classifiers and feature selection methods

被引:0
|
作者
Yaslan, Yusuf [1 ]
Cataltepe, Zehra [1 ]
机构
[1] Istanbul Tech Univ, Dept Comp Engn, TR-34469 Istanbul, Turkey
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We examine performance of different classifiers on different audio feature sets to determine the genre of a given music piece. For each classifier, we also evaluate performances of feature sets obtained by dimensionality reduction methods. Finally, we experiment on increasing classification accuracy by combining different classifiers. Using a set of different classifiers, we first obtain a test genre classification accuracy of around 79.6 +/- 4.2% on 10 genre set of 1000 music pieces. This performance is better than 71.1 +/- 7.3% which is the best that has been reported on this data set. We also obtain 80% classification accuracy by using dimensionality reduction or combining different classifiers. We observe that the best feature set depends on the classifier used.
引用
收藏
页码:573 / +
页数:2
相关论文
共 50 条
  • [1] Music genre classification using audio features, different classifiers and feature selection methods
    Yaslan, Yusuf
    Cataltepe, Zehra
    [J]. 2006 IEEE 14TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS, VOLS 1 AND 2, 2006, : 535 - +
  • [2] Music Genre Classification using Dynamic Selection of Ensemble of Classifiers
    Lisboa de Almeida, Paulo Ricardo
    Britto, Alceu de Souza, Jr.
    da Silva Junior, Eunelson Jose
    Soares de Oliveira, Luis Eduardo
    Celinski, Tatiana Montes
    Koerich, Alessandro Lameiras
    [J]. PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 2700 - 2705
  • [3] Music genre classification using visual features with feature selection
    Zottesso, Rafael H. D.
    Costa, Yandre M. G.
    Bertolini, Diego
    [J]. PROCEEDINGS OF THE 2016 35TH INTERNATIONAL CONFERENCE OF THE CHILEAN COMPUTER SCIENCE SOCIETY (SCCC), 2016,
  • [4] Feature Selection in Automatic Music Genre Classification
    Silla, Carlos N., Jr.
    Koerich, Alessandro L.
    Kaestner, Celso A. A.
    [J]. ISM: 2008 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA, 2008, : 39 - +
  • [5] On the Use of Feature Selection for Music Genre Classification
    Al-Tamimi, Abdel-Karim
    Salem, Maher
    Al-Alami, Ahmad
    [J]. 2020 SEVENTH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY TRENDS (ITT 2020), 2020, : 1 - 6
  • [6] Importance of audio feature reduction in automatic music genre classification
    Babu Kaji Baniya
    Joonwhoan Lee
    [J]. Multimedia Tools and Applications, 2016, 75 : 3013 - 3026
  • [7] Importance of audio feature reduction in automatic music genre classification
    Baniya, Babu Kaji
    Lee, Joonwhoan
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2016, 75 (06) : 3013 - 3026
  • [8] Audio Feature Reduction and Analysis for Automatic Music Genre Classification
    Baniya, Babu Kaji
    Lee, Joonwhoan
    Li, Ze-Nian
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2014, : 457 - 462
  • [9] A Comparative Study of Classifiers for Music Genre Classification based on Feature Extractors
    Kumar, Pradeep D.
    Sowmya, B. J.
    Chetan
    Srinivasa, K. G.
    [J]. PROCEEDINGS OF 2016 IEEE INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING, VLSI, ELECTRICAL CIRCUITS AND ROBOTICS (DISCOVER), 2016, : 190 - 194
  • [10] An Informative Feature Selection Method for Music Genre Classification
    Seo, Jin Soo
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2011, E94D (06): : 1362 - 1365