Computational design of three-dimensional RNA structure and function

被引:44
|
作者
Yesselman, Joseph D. [1 ]
Eiler, Daniel [2 ]
Carlson, Erik D. [3 ,4 ,5 ]
Gotrik, Michael R. [1 ]
d'Aquino, Anne E. [3 ,5 ,6 ]
Ooms, Alexandra N. [7 ]
Kladwang, Wipapat [1 ]
Carlson, Paul D. [8 ]
Shi, Xuesong [1 ]
Costantino, David A. [2 ]
Herschlag, Daniel [1 ,9 ,10 ]
Lucks, Julius B. [3 ,4 ,5 ,6 ]
Jewett, Michael C. [3 ,4 ,5 ,6 ]
Kieft, Jeffrey S. [2 ]
Das, Rhiju [1 ,11 ]
机构
[1] Stanford Univ, Sch Med, Dept Biochem, Stanford, CA 94305 USA
[2] Univ Colorado Denver, Sch Med, Dept Biochem & Mol Genet, Aurora, CO USA
[3] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL USA
[4] Northwestern Univ, Chem Life Proc Inst, Evanston, IL USA
[5] Northwestern Univ, Ctr Synthet Biol, Evanston, IL USA
[6] Northwestern Univ, Interdisciplinary Biol Sci Grad Program, Evanston, IL USA
[7] Stanford Univ, Sch Med, Dept Canc Genet & Genom, Stanford, CA USA
[8] Cornell Univ, Robert F Smith Sch Chem & Biomol Engn, Ithaca, NY USA
[9] Stanford Univ, Sch Med, Dept Chem, Stanford, CA USA
[10] Stanford Univ, Stanford ChEM H Chem Engn & Med Human Hlth, Stanford, CA 94305 USA
[11] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
BUILDING-BLOCKS; EMERGING FIELD; PROTEIN; MOTIFS; APTAMERS; ARCHITECTURES; RIBOSWITCHES; RECOGNITION; SELECTION; REVEALS;
D O I
10.1038/s41565-019-0517-8
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
RNA nanotechnology seeks to create nanoscale machines by repurposing natural RNA modules. The field is slowed by the current need for human intuition during three-dimensional structural design. Here, we demonstrate that three distinct problems in RNA nanotechnology can be reduced to a pathfinding problem and automatically solved through an algorithm called RNAMake. First, RNAMake discovers highly stable single-chain solutions to the classic problem of aligning a tetraloop and its sequence-distal receptor, with experimental validation from chemical mapping, gel electrophoresis, solution X-ray scattering and crystallography with 2.55 angstrom resolution. Second, RNAMake automatically generates structured tethers that integrate 16S and 23S ribosomal RNAs into single-chain ribosomal RNAs that remain uncleaved by ribonucleases and assemble onto messenger RNA. Third, RNAMake enables the automated stabilization of small-molecule binding RNAs, with designed tertiary contacts that improve the binding affinity of the ATP aptamer and improve the fluorescence and stability of the Spinach RNA in cell extracts and in living Escherichia coli cells.
引用
收藏
页码:866 / +
页数:9
相关论文
共 50 条
  • [1] Computational design of three-dimensional RNA structure and function
    Joseph D. Yesselman
    Daniel Eiler
    Erik D. Carlson
    Michael R. Gotrik
    Anne E. d’Aquino
    Alexandra N. Ooms
    Wipapat Kladwang
    Paul D. Carlson
    Xuesong Shi
    David A. Costantino
    Daniel Herschlag
    Julius B. Lucks
    Michael C. Jewett
    Jeffrey S. Kieft
    Rhiju Das
    [J]. Nature Nanotechnology, 2019, 14 : 866 - 873
  • [2] Computational modelling of three-dimensional genome structure
    Plewczynski, Dariusz
    Kadlof, Michal
    [J]. METHODS, 2020, 181 : 1 - 4
  • [3] Three-dimensional genome structure and function
    Liu, Hao
    Tsai, Hsiangyu
    Yang, Maoquan
    Li, Guozhi
    Bian, Qian
    Ding, Gang
    Wu, Dandan
    Dai, Jiewen
    [J]. MEDCOMM, 2023, 4 (04):
  • [4] Accurate computational design of three-dimensional protein crystals
    Li, Zhe
    Wang, Shunzhi
    Nattermann, Una
    Bera, Asim K.
    Borst, Andrew J.
    Yaman, Muammer Y.
    Bick, Matthew J.
    Yang, Erin C.
    Sheffler, William
    Lee, Byeongdu
    Seifert, Soenke
    Hura, Greg L.
    Nguyen, Hannah
    Kang, Alex
    Dalal, Radhika
    Lubner, Joshua M.
    Hsia, Yang
    Haddox, Hugh
    Courbet, Alexis
    Dowling, Quinton
    Miranda, Marcos
    Favor, Andrew
    Etemadi, Ali
    Edman, Natasha I.
    Yang, Wei
    Weidle, Connor
    Sankaran, Banumathi
    Negahdari, Babak
    Ross, Michael B.
    Ginger, David S.
    Baker, David
    [J]. NATURE MATERIALS, 2023, 22 (12) : 1556 - +
  • [5] Accurate computational design of three-dimensional protein crystals
    Zhe Li
    Shunzhi Wang
    Una Nattermann
    Asim K. Bera
    Andrew J. Borst
    Muammer Y. Yaman
    Matthew J. Bick
    Erin C. Yang
    William Sheffler
    Byeongdu Lee
    Soenke Seifert
    Greg L. Hura
    Hannah Nguyen
    Alex Kang
    Radhika Dalal
    Joshua M. Lubner
    Yang Hsia
    Hugh Haddox
    Alexis Courbet
    Quinton Dowling
    Marcos Miranda
    Andrew Favor
    Ali Etemadi
    Natasha I. Edman
    Wei Yang
    Connor Weidle
    Banumathi Sankaran
    Babak Negahdari
    Michael B. Ross
    David S. Ginger
    David Baker
    [J]. Nature Materials, 2023, 22 : 1556 - 1563
  • [6] Computational identification of RNA functional determinants by three-dimensional quantitative structure-activity relationships
    Blanchet, Marc-Frederick
    St-Onge, Karine
    Lisi, Veronique
    Robitaille, Julie
    Hamel, Sylvie
    Major, Francois
    [J]. NUCLEIC ACIDS RESEARCH, 2014, 42 (17) : 11261 - 11271
  • [7] Three-dimensional structure and function of replication protein A
    Mer, G
    Bochkarev, A
    Chazin, WJ
    Edwards, AM
    [J]. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 2000, 65 : 193 - 200
  • [8] Three-dimensional structure of tuna scales: novel trabecular design and hypothesized function
    Wainwright, D. K.
    Lauder, G., V
    [J]. INTEGRATIVE AND COMPARATIVE BIOLOGY, 2016, 56 : E233 - E233
  • [9] PotD protein: Three-dimensional structure and function
    Sugiyama, S
    Igarashi, K
    Morikawa, K
    [J]. SEIKAGAKU, 1997, 69 (02): : 113 - 119
  • [10] iFoldRNA: three-dimensional RNA structure prediction and folding
    Sharma, Shantanu
    Ding, Feng
    Dokholyan, Nikolay V.
    [J]. BIOINFORMATICS, 2008, 24 (17) : 1951 - 1952