Time series analysis and long short-term memory (LSTM) network prediction of BPV current density

被引:11
|
作者
Okedi, Tonny, I [1 ]
Fisher, Adrian C. [1 ,2 ]
机构
[1] Univ Cambridge, Dept Chem Engn & Biotechnol, Phillipa Fawcett Dr, Cambridge CB3 0AS, England
[2] Cambridge Ctr Adv Res & Educ Singapore CARES, 1 Create Way,05-05 CREATE Tower, Singapore 138602, Singapore
基金
英国工程与自然科学研究理事会;
关键词
ELECTROGENIC ACTIVITY; ALGAE SUSPENSION; PCC; 6803; MODEL; PHOTOCURRENTS; TRANSDUCTION; GENERATION;
D O I
10.1039/d0ee02970j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biophotovoltaics (BPVs) have increasingly gained interest due to their potential to generate low-carbon electricity and chemicals from just sunlight and water using photosynthetic microorganisms. A key hurdle in developing commercial biophotovoltaic devices is understanding the electron path from within the microorganism to the electrode. The complexities of competing cellular metabolic reactions and adaptive/temporal physiological changes make it difficult to develop first-principle models to aid in the study of the electron path. In this work, Seasonal and Trend Decomposition using locally estimated scatterplot smoothing or LOESS (STL) is applied to decompose the current density profile of electricity-generating BPV devices into their trend, seasonal and irregular components. A Long Short-Term Memory (LSTM) network is then used to predict the one-step-ahead current density using lagged values of the output and light status (on/off). The LSTM network fails to adequately predict the observed current density profile, but adequately predicts the light-controlled seasonal component with mean absolute errors of 0.007, 0.0014 and 0.0013 mu A m(-2) on the training, validation and test sets respectively. The improved performance in the latter is attributed to the removal of irregular patterns. An additional predictor, biofilm fluorescence yield, is proposed to improve predictions of both the observed current density and its seasonal component. This seminal work on the use of LSTM networks to predict the current density of biophotovoltaics opens doors for faster and more cost effective device optimisation, as well as the development of control software for these devices.
引用
下载
收藏
页码:2408 / 2418
页数:11
相关论文
共 50 条
  • [1] Multilayer Long Short-Term Memory (LSTM) Neural Networks in Time Series Analysis
    Malinovic, Nemanja S.
    Predic, Bratislav B.
    Roganovic, Milos
    2020 55TH INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES (IEEE ICEST 2020), 2020, : 11 - 14
  • [2] Time-series well performance prediction based on Long Short-Term Memory (LSTM) neural network model
    Song, Xuanyi
    Liu, Yuetian
    Xue, Liang
    Wang, Jun
    Zhang, Jingzhe
    Wang, Junqiang
    Jiang, Long
    Cheng, Ziyan
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 186 (186)
  • [3] Long Short-term Memory Network Prediction Model Based on Fuzzy Time Series
    Qu, Hua
    Li, Jiaqi
    Zhang, Yanpeng
    PROCEEDINGS OF 2020 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INFORMATION SYSTEMS (ICAIIS), 2020, : 417 - 421
  • [4] Time series prediction method based on the bidirectional long short-term memory network
    Guan, Yepeng
    Su, Guangyao
    Sheng, Yi
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2024, 51 (03): : 103 - 112
  • [5] Financial time series prediction under Covid-19 pandemic crisis with Long Short-Term Memory (LSTM) network
    Mroua, Mourad
    Lamine, Ahlem
    HUMANITIES & SOCIAL SCIENCES COMMUNICATIONS, 2023, 10 (01):
  • [6] Financial time series prediction under Covid-19 pandemic crisis with Long Short-Term Memory (LSTM) network
    Mourad Mroua
    Ahlem Lamine
    Humanities and Social Sciences Communications, 10
  • [7] Deep Learning with Long Short-Term Memory for Time Series Prediction
    Hua, Yuxiu
    Zhao, Zhifeng
    Li, Rongpeng
    Chen, Xianfu
    Liu, Zhiming
    Zhang, Honggang
    IEEE COMMUNICATIONS MAGAZINE, 2019, 57 (06) : 114 - 119
  • [8] Well performance prediction based on Long Short-Term Memory (LSTM) neural network
    Huang, Ruijie
    Wei, Chenji
    Wang, Baohua
    Yang, Jian
    Xu, Xin
    Wu, Suwei
    Huang, Suqi
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 208
  • [9] Optimized long short-term memory (LSTM) network for performance prediction in unconventional reservoirs
    Qiu, Kaixuan
    Li, Jia
    Chen, Da
    ENERGY REPORTS, 2022, 8 : 15436 - 15445
  • [10] Short-Term Traffic Flow Prediction for Hybrid Time Series Decomposition Analysis and LSTM Neural Network
    Yu, Yinghao
    Zhang, Weibin
    Qi, Yong
    Guo, Haifeng
    CICTP 2019: TRANSPORTATION IN CHINA-CONNECTING THE WORLD, 2019, : 2350 - 2362