A survey of multivariate calibration methods for pattern classification

被引:0
|
作者
Plach, H [1 ]
Eitzinger, C [1 ]
Berndorfer, T [1 ]
Van Dyck, W [1 ]
机构
[1] Vienna Tech Univ, Inst Automat & Control, A-1040 Vienna, Austria
来源
OPTOMECHATRONIC SYSTEMS III | 2002年 / 4902卷
关键词
multivariate calibration; linear discrimination; pattern classification;
D O I
10.1117/12.467254
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Various methods for multivariate calibration like Principal Component Regression (PCR) and Partial Least Squares Regression (PLSR) are evaluated for their use in the field of pattern classification. These methods have the advantage that they can deal with high-dimensional feature spaces and multi-collinear data, since they inherently reduce the dimension of the feature space to represent it by one single dimension. Additionally, they yield very simple linear classifiers, which can be used for real-time calculation. These properties make the methods particularly useful in the field of image processing, where one often find high-dimensional spaces-with linearly dependent data and usually we have tight requirements on computational complexity.
引用
收藏
页码:521 / 527
页数:7
相关论文
共 50 条
  • [1] Application of Multivariate Linear and Nonlinear Calibration and Classification Methods in Drug Design
    Abdolmaleki, Azizeh
    Ghasemi, Jahan B.
    Shiri, Fereshteh
    Pirhadi, Somayeh
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2015, 18 (08) : 795 - 808
  • [2] Multivariate analysis for pattern classification
    Universitat Politecnica de Catalunya, Barcelona, Spain
    Comput Phys Commun, (723):
  • [3] A GLOBAL PERSPECTIVE ON MULTIVARIATE CALIBRATION METHODS
    LANG, PM
    KALIVAS, JH
    JOURNAL OF CHEMOMETRICS, 1993, 7 (03) : 153 - 163
  • [4] Calibration transfer in multivariate methods.
    Honorato, Fernanda Araujo
    Neto, Benicio de Barros
    Martins, Marcelo Nascimento
    Galvao, Roberto Kawakami Harrop
    Pimentel, Maria Fernanda
    QUIMICA NOVA, 2007, 30 (05): : 1301 - 1312
  • [5] Multivariate calibration stability: a comparison of methods
    Marx, BD
    Eilers, PHC
    JOURNAL OF CHEMOMETRICS, 2002, 16 (03) : 129 - 140
  • [6] Effective rank for multivariate calibration methods
    Seipel, HA
    Kalivas, JH
    JOURNAL OF CHEMOMETRICS, 2004, 18 (06) : 306 - 311
  • [7] Pattern Classification Adopting Multivariate Polynomials
    Toh, Kar-Ann
    2014 IEEE NINTH INTERNATIONAL CONFERENCE ON INTELLIGENT SENSORS, SENSOR NETWORKS AND INFORMATION PROCESSING (IEEE ISSNIP 2014), 2014,
  • [8] SELECTION OF CALIBRATION MIXTURES AND WAVELENGTHS FOR DIFFERENT MULTIVARIATE CALIBRATION METHODS
    NAVARROVILLOSLADA, F
    PEREZARRIBAS, LV
    LEONGONZALEZ, ME
    POLODIEZ, LM
    ANALYTICA CHIMICA ACTA, 1995, 313 (1-2) : 93 - 101
  • [9] Methods of pattern classification
    Research Inst. of Space Electronics Information Technology, National Univ. of Defense Technology, Changsha 410073, China
    不详
    Xi Tong Cheng Yu Dian Zi Ji Shu/Syst Eng Electron, 2007, 1 (99-102):
  • [10] MULTIVARIATE CALIBRATION .2. CHEMOMETRIC METHODS
    NAES, T
    MARTENS, H
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 1984, 3 (10) : 266 - 271