Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries co-modified by lanthanum and aluminum

被引:4
|
作者
Tang, Yongqing [1 ]
Chen, Shijuan [2 ]
机构
[1] Sichuan Police Coll, Luzhou 646000, Peoples R China
[2] Tianjin Jinniu Power Sources Mat Co Ltd, Tianjin 300400, Peoples R China
关键词
Lithium-rich; 3LaAlO(3):Al2O3; Coating; Lithium-ion batteries; CATHODE MATERIAL; SURFACE MODIFICATION; CYCLING STABILITY; RATE CAPABILITY; VOLTAGE DECAY; HIGH-CAPACITY; LI1.2NI0.13CO0.13MN0.54O2; BEHAVIOR; DEFECTS;
D O I
10.1007/s11581-020-03888-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As one of the most promising for the next-generation cathode material, the lithium-rich cathode is mainly suffering from severe capacity fading and voltage drop. Herein, the Li1.2Mn0.54Ni0.13Co0.13O2 cathode material co-modified by lanthanum and aluminum, i.e., 3LaAlO(3):Al2O3, has been successfully achieved by sol-gel method. The Li1.2Mn0.54Ni0.13Co0.13O2 cathode with 3 wt% of 3LaAlO(3):Al2O3 (LR-NMC@0.03) delivers an initial discharge capacity of 242.3 mAh g(-1) at 1.0C with a corresponding capacity retention of 91.7% after 200 cycles, far higher than those (217.7 mAh g(-1) and 72.8%) of the pristine sample. What is more important is that the capacity retention can increase from 42.9 to 83.5% even at 5.0C after 200 cycles. Specially, the voltage drop has been relieved by the 3LaAlO(3):Al2O3 coating layer. The 3LaAlO(3):Al2O3 applied in Li-rich cathode material has been demonstrated to be a feasible surface modification method to construct high-energy and high-power Li-ion batteries.
引用
收藏
页码:935 / 948
页数:14
相关论文
共 50 条
  • [1] Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries co-modified by lanthanum and aluminum
    Yongqing Tang
    Shijuan Chen
    Ionics, 2021, 27 : 935 - 948
  • [2] Sn-doped Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials for lithium-ion batteries with enhanced electrochemical performance
    Lin Zhou
    Jing Liu
    Lisi Huang
    Na Jiang
    Qiaoji Zheng
    Dunmin Lin
    Journal of Solid State Electrochemistry, 2017, 21 : 3467 - 3477
  • [3] Sn-doped Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials for lithium-ion batteries with enhanced electrochemical performance
    Zhou, Lin
    Liu, Jing
    Huang, Lisi
    Jiang, Na
    Zheng, Qiaoji
    Lin, Dunmin
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2017, 21 (12) : 3467 - 3477
  • [4] Enhanced electrochemical performance of Ti-doped Li1.2Mn0.54Co0.13Ni0.13O2 for lithium-ion batteries
    Feng, Xin
    Gao, Yurui
    Ben, Liubin
    Yang, Zhenzhong
    Wang, Zhaoxiang
    Chen, Liquan
    JOURNAL OF POWER SOURCES, 2016, 317 : 74 - 80
  • [5] Synthesis and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion battery
    ChenQiang Du
    Fei Zhang
    ChenXiang Ma
    JunWei Wu
    ZhiYuan Tang
    XinHe Zhang
    Deyang Qu
    Ionics, 2016, 22 : 209 - 218
  • [6] Synthesis and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion battery
    Du, ChenQiang
    Zhang, Fei
    Ma, ChenXiang
    Wu, JunWei
    Tang, ZhiYuan
    Zhang, XinHe
    Qu, Deyang
    IONICS, 2016, 22 (02) : 209 - 218
  • [7] LiNbO3-coated Li1.2Mn0.54Ni0.13Co0.13O2 as a cathode material with enhanced electrochemical performances for lithium-ion batteries
    Jie Wang
    Kewei Wu
    Changsheng Xu
    Xuebu Hu
    Lei Qiu
    Journal of Materials Science: Materials in Electronics, 2021, 32 : 28223 - 28233
  • [8] LiNbO3-coated Li1.2Mn0.54Ni0.13Co0.13O2 as a cathode material with enhanced electrochemical performances for lithium-ion batteries
    Wang, Jie
    Wu, Kewei
    Xu, Changsheng
    Hu, Xuebu
    Qiu, Lei
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (24) : 28223 - 28233
  • [9] Effects of Lithium Content and Surface Area on the Electrochemical Performance of Li1.2Mn0.54Ni0.13Co0.13O2
    Lengyel, Miklos
    Atlas, Gal
    Elhassid, Dror
    Zhang, Xiaofeng
    Belharouak, Ilias
    Axelbaum, Richard L.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (06) : A1023 - A1031
  • [10] Polyurethane foam as restrict reaction vessel to synthesis of Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries
    Zhao, Wei
    Cai, Peijun
    Zhang, Ya
    Hu, Yi
    Sun, Yongwen
    Shi, Yueli
    Ju, Zhicheng
    MATERIALS RESEARCH EXPRESS, 2018, 5 (06):