Flat deformations of curves:: A local-global principal

被引:0
|
作者
Bertin, Jose
Mezard, Ariane
机构
[1] Univ Grenoble 1, Inst Fourier, F-38402 St Martin Dheres, France
[2] Univ Paris 11, F-91405 Orsay, France
关键词
D O I
10.1007/BF02773957
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C be a generically smooth, locally complete intersection curve defined over an algebraically closed field k of characteristic p >= 0. Let G subset of Aut(k) C be a finite group of automorphisms of C. We develop a theory of G-equivariant deformations of the Galois cover C -> C/G. We give a thorough study of the local obstructions, those localized at singular or widely ramified points, to deform equivariantly a cover. As an application, we discuss the case of G-equivariant deformations of semistable curves.
引用
收藏
页码:281 / 307
页数:27
相关论文
共 50 条
  • [1] On local-global divisibility by pn in elliptic curves
    Paladino, Laura
    Ranieri, Gabriele
    Viada, Evelina
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2012, 44 : 789 - 802
  • [2] On genus one curves violating the local-global principle
    Wu, Han
    JOURNAL OF NUMBER THEORY, 2023, 242 : 235 - 243
  • [3] On a probabilistic local-global principle for torsion on elliptic curves
    Cullinan, John
    Kenney, Meagan
    Voight, John
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2022, 34 (01): : 41 - 90
  • [4] Tetrahedral elliptic curves and the local-global principle for isogenies
    Banwait, Barinder S.
    Cremona, John E.
    ALGEBRA & NUMBER THEORY, 2014, 8 (05) : 1201 - 1229
  • [5] Counterexamples to the local-global divisibility over elliptic curves
    Ranieri, Gabriele
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (04) : 1215 - 1225
  • [7] LOCAL-GLOBAL PRINCIPLES FOR TORSORS OVER ARITHMETIC CURVES
    Harbater, David
    Hartmann, Julia
    Krashen, Daniel
    AMERICAN JOURNAL OF MATHEMATICS, 2015, 137 (06) : 1559 - 1612
  • [8] The local-global principle for divisibility in CM elliptic curves
    Creutz, Brendan
    Lu, Sheng
    JOURNAL OF NUMBER THEORY, 2023, 250 : 139 - 154
  • [9] Local-global principles for tori over arithmetic curves
    Colliot-Thelene, Jean-Louis
    Harbater, David
    Hartmann, Julia
    Krashen, Daniel
    Parimala, Raman
    Suresh, Venapally
    ALGEBRAIC GEOMETRY, 2020, 7 (05): : 607 - 633
  • [10] Curves over every global field violating the local-global principle
    Poonen B.
    Journal of Mathematical Sciences, 2010, 171 (6) : 782 - 785