Orthogonality of Jacobi and Laguerre polynomials for general parameters via the Hadamard finite part

被引:5
|
作者
Costin, Rodica D. [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
Jacobi polynomials; Laguerre polynomials; Orthogonality for general parameters; Riemann-Hilbert problems; Hadamard finite part; RIEMANN-HILBERT ANALYSIS;
D O I
10.1016/j.jat.2009.04.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Orthogonality of the Jacobi and Laguerre polynomials, P(n)((alpha,beta)), L(n)((alpha)), alpha + beta is an element of C\Z(-), alpha + beta not equal -2, -3, ... using the Hadamard finite part of the integral which gives their orthogonality in the classical cases. Riemann-Hilbert problems that these polynomials satisfy are found. The results are formally similar to the ones in the classical case (when R alpha, R beta > -1). (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:141 / 152
页数:12
相关论文
共 16 条
  • [1] Orthogonality of Jacobi polynomials with general parameters
    Kuijlaars, ABJ
    Martínez-Finkelshtein, A
    Orive, R
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2005, 19 : 1 - 17
  • [2] Jacobi Series for General Parameters via Hadamard Finite Part and Application to Nonhomogeneous Hypergeometric Equations
    Costin, Rodica D.
    David, Marina
    INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES, 2019, 2019
  • [3] Orthogonality of the Jacobi polynomials with negative integer parameters
    Alfaro, M
    de Morales, MA
    Rezola, ML
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 145 (02) : 379 - 386
  • [4] Discrete orthogonality relations for multi-indexed Laguerre and Jacobi polynomials
    Ho, Choon-Lin
    Sasaki, Ryu
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (01)
  • [5] ORTHOGONALITY OF QUASI-NATURE SPECTRAL POLYNOMIALS OF JACOBI AND LAGUERRE TYPE
    Kumar, Vikash
    Swaminathan, A.
    arXiv,
  • [6] On the Finite Orthogonality ofq-Pseudo-Jacobi Polynomials
    Masjed-Jamei, Mohammad
    Saad, Nasser
    Koepf, Wolfram
    Soleyman, Fatemeh
    MATHEMATICS, 2020, 8 (08)
  • [7] Classical and Sobolev orthogonality of the nonclassical Jacobi polynomials with parameters α = β =-1
    Bruder, Andrea
    Littlejohn, Lance L.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (02) : 431 - 455
  • [8] Orthogonality of the big −1 Jacobi polynomials for non-standard parameters
    Cohl, Howard S.
    Costas-Santos, Roberto S.
    arXiv, 2023,
  • [9] Orthogonality and asymptotics of Pseudo-Jacobi polynomials for non-classical parameters
    Jordaan, K.
    Tookos, F.
    JOURNAL OF APPROXIMATION THEORY, 2014, 178 : 1 - 12
  • [10] SOME FINITE INTEGRALS INVOLVING THE PRODUCT OF BESSEL FUNCTION WITH JACOBI AND LAGUERRE POLYNOMIALS
    Ghayasuddin, Mohd
    Khan, Nabiullah
    Khan, Shorab Wali
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (03): : 1013 - 1024