Effect of antimony on the density of InAs/Sb:GaAs(100) quantum dots grown by metalorganic chemical-vapor deposition

被引:31
|
作者
Guimard, Denis
Nishioka, Masao
Tsukamoto, Shiro
Arakawa, Yasuhiko
机构
[1] Univ Tokyo, Inst Ind Sci, CNRS, Nanoelect Collaborat Res Ctr,UMI 2820,Meguro Ku, Tokyo 1538505, Japan
[2] Univ Tokyo, Inst Ind Sci, CNRS, Lab Integrated Micro Mech Syst,UMI 2820,Meguro Ku, Tokyo 1538505, Japan
基金
日本学术振兴会;
关键词
nanostructure; metalorganic chemical-vapor deposition; semiconducting III-V material; semiconducting indium compound;
D O I
10.1016/j.jcrysgro.2006.10.180
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
We report the fabrication of high-density InAs quantum dots (QDs) grown on GaAs(I 0 0) substrate by metalorganic chemical-vapor deposition (MOCVD), obtained by antimony surfactant-mediated growth. We achieved InAs/Sb:GaAs QDs with dot density ranging from 2 x 10(10) cm to 2-11 X 10(11) cm(-2), with complete suppression of coalescence. We studied the dependence of the total dot density and the density of coalesced dots on the growth conditions, such as antimony irradiation time, growth temperature and growth rate. Strongly enhanced PL intensity at room temperature (RT) was obtained from InAs/Sb:GaAs QDs with density above 4 x 10(10) cm(-2), compared to reference InAs/GaAs QDs. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:548 / 552
页数:5
相关论文
共 50 条
  • [1] InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition
    Heinrichsdorff, F
    Krost, A
    Kirstaedter, N
    Mao, MH
    Grundmann, M
    Bimberg, D
    Kosogov, AO
    Werner, P
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 1997, 36 (6B): : 4129 - 4133
  • [2] Electroluminescence and materials characterization of InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition
    Huffaker, DL
    El-Emawy, AR
    Birudavolu, S
    Wong, PS
    Xu, H
    Ukhanov, A
    Malloy, KJ
    2002 IEEE/LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2002, : 614 - 615
  • [3] Role of thin GaAs interlayer on InAs quantum dots grown on InGaAsP/InP (100) by metalorganic chemical vapor deposition
    Barik, S
    Tan, HH
    Jagadish, C
    Commad 04: 2004 Conference on Optoelectronic and Microelectronic Materials and Devices, Proceedings, 2005, : 331 - 334
  • [4] Growth of InAs quantum dots on vicinal GaAs (100) substrates by metalorganic chemical vapor deposition and their optical properties
    Liang, S
    Zhu, HL
    Pan, JQ
    Ye, XL
    Wang, W
    JOURNAL OF CRYSTAL GROWTH, 2006, 289 (02) : 477 - 484
  • [5] 1.3 to 1.5 μm range emission from InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition
    Hsieh, TP
    Yeh, NT
    Chiu, PC
    Huang, KF
    Ho, WC
    Wu, MC
    Chyi, JI
    2003 INTERNATIONAL CONFERENCE INDIUM PHOSPHIDE AND RELATED MATERIALS, CONFERENCE PROCEEDINGS, 2003, : 456 - 459
  • [6] Room temperature lasing with low threshold current of InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition
    Tatebayashi, J
    Hatori, N
    Ebe, H
    Sudou, H
    Kuramata, A
    Sugawara, M
    Arakawa, Y
    2003 IEEE LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2003, : 122 - 123
  • [7] Defect dissolution in strain-compensated stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition
    Nuntawong, N
    Huang, S
    Jiang, YB
    Hains, CP
    Huffaker, DL
    APPLIED PHYSICS LETTERS, 2005, 87 (11)
  • [8] Growth mechanism of InAs quantum dots on GaAs by metal-organic chemical-vapor deposition
    Chung, T
    Walter, G
    Holonyak, N
    JOURNAL OF APPLIED PHYSICS, 2005, 97 (05)
  • [9] Selective growth of InAs quantum dots by metalorganic chemical vapor deposition
    Yeoh, TS
    Swint, RB
    Gaur, A
    Elarde, VC
    Coleman, JJ
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2002, 8 (04) : 833 - 838
  • [10] InGaN self-assembled quantum dots grown by metalorganic chemical-vapor deposition with indium as the antisurfactant
    Zhang, J
    Hao, M
    Li, P
    Chua, SJ
    APPLIED PHYSICS LETTERS, 2002, 80 (03) : 485 - 487