Mongolian Speech Recognition Based on Deep Neural Networks

被引:7
|
作者
Zhang, Hui [1 ]
Bao, Feilong [1 ]
Gao, Guanglai [1 ]
机构
[1] Inner Mongolia Univ, Coll Comp Sci, Hohhot 010021, Peoples R China
关键词
Mongolian; Deep Neural Networks (DNNs); Gaussian Mixture Models (GMMs); N-gram language model;
D O I
10.1007/978-3-319-25816-4_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Mongolian is an influential language. And better Mongolian Large Vocabulary Continuous Speech Recognition (LVCSR) systems are required. Recently, the research of speech recognition has achieved a big improvement by introducing the Deep Neural Networks (DNNs). In this study, a DNN-based Mongolian LVCSR system is built. Experimental results show that the DNN-based models outperform the conventional models which based on Gaussian Mixture Models (GMMs) for the Mongolian speech recognition, by a large margin. Compared with the best GMM-based model, the DNN-based one obtains a relative improvement over 50 %. And it becomes a new state-of-the-art system in this field.
引用
收藏
页码:180 / 188
页数:9
相关论文
共 50 条
  • [1] Acceleration Strategies for Speech Recognition based on Deep Neural Networks
    Tian, Chao
    Liu, Jia
    Peng, Zhaomeng
    [J]. MECHATRONICS ENGINEERING, COMPUTING AND INFORMATION TECHNOLOGY, 2014, 556-562 : 5181 - 5185
  • [2] DEEP MAXOUT NEURAL NETWORKS FOR SPEECH RECOGNITION
    Cai, Meng
    Shi, Yongzhe
    Liu, Jia
    [J]. 2013 IEEE WORKSHOP ON AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING (ASRU), 2013, : 291 - 296
  • [3] Deep Segmental Neural Networks for Speech Recognition
    Abdel-Hamid, Ossama
    Deng, Li
    Yu, Dong
    Jiang, Hui
    [J]. 14TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2013), VOLS 1-5, 2013, : 1848 - 1852
  • [4] Deep Neural Networks in Russian Speech Recognition
    Markovnikov, Nikita
    Kipyatkova, Irina
    Karpov, Alexey
    Filchenkov, Andrey
    [J]. ARTIFICIAL INTELLIGENCE AND NATURAL LANGUAGE, 2018, 789 : 54 - 67
  • [5] Binary Deep Neural Networks for Speech Recognition
    Xiang, Xu
    Qian, Yanmin
    Yu, Kai
    [J]. 18TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2017), VOLS 1-6: SITUATED INTERACTION, 2017, : 533 - 537
  • [6] SPEECH RECOGNITION WITH DEEP RECURRENT NEURAL NETWORKS
    Graves, Alex
    Mohamed, Abdel-rahman
    Hinton, Geoffrey
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 6645 - 6649
  • [7] Automatic Speech Recognition with Deep Neural Networks for Impaired Speech
    Espana-Bonet, Cristina
    Fonollosa, Jose A. R.
    [J]. ADVANCES IN SPEECH AND LANGUAGE TECHNOLOGIES FOR IBERIAN LANGUAGES, IBERSPEECH 2016, 2016, 10077 : 97 - 107
  • [8] Robust Speech Recognition with Speech Enhanced Deep Neural Networks
    Du, Jun
    Wang, Qing
    Gao, Tian
    Xu, Yong
    Dai, Lirong
    Lee, Chin-Hui
    [J]. 15TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2014), VOLS 1-4, 2014, : 616 - 620
  • [9] Exploiting deep neural networks for detection-based speech recognition
    Siniscalchi, Sabato Marco
    Yu, Dong
    Deng, Li
    Lee, Chin-Hui
    [J]. NEUROCOMPUTING, 2013, 106 : 148 - 157
  • [10] Improvement on Speech Emotion Recognition Based on Deep Convolutional Neural Networks
    Niu, Yafeng
    Zou, Dongsheng
    Niu, Yadong
    He, Zhongshi
    Tan, Hua
    [J]. PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON COMPUTING AND ARTIFICIAL INTELLIGENCE (ICCAI 2018), 2018, : 13 - 18