Multimodal Signal Analysis for Pain Recognition in Physiotherapy Using Wavelet Scattering Transform

被引:7
|
作者
Badura, Aleksandra [1 ]
Maslowska, Aleksandra [2 ]
Mysliwiec, Andrzej [2 ]
Pietka, Ewa [1 ]
机构
[1] Silesian Tech Univ, Fac Biomed Engn, Roosevelta 40, PL-41800 Zabrze, Poland
[2] Acad Phys Educ Katowice, Inst Physiotheraphy & Hlth Sci, Mikolowska 72a, PL-40065 Katowice, Poland
关键词
pain assessment; pain monitoring; physiotherapy; FACIAL EXPRESSION;
D O I
10.3390/s21041311
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Fascial therapy is an effective, yet painful, procedure. Information about pain level is essential for the physiotherapist to adjust the therapy course and avoid potential tissue damage. We have developed a method for automatic pain-related reaction assessment in physiotherapy due to the subjectivity of a self-report. Based on a multimodal data set, we determine the feature vector, including wavelet scattering transforms coefficients. The AdaBoost classification model distinguishes three levels of reaction (no-pain, moderate pain, and severe pain). Because patients vary in pain reactions and pain resistance, our survey assumes a subject-dependent protocol. The results reflect an individual perception of pain in patients. They also show that multiclass evaluation outperforms the binary recognition.
引用
收藏
页码:1 / 14
页数:13
相关论文
共 50 条
  • [1] ERG signal analysis using wavelet transform
    R. Barraco
    D. Persano Adorno
    M. Brai
    [J]. Theory in Biosciences, 2011, 130 : 155 - 163
  • [2] ERG signal analysis using wavelet transform
    Barraco, R.
    Adorno, D. Persano
    Brai, M.
    [J]. THEORY IN BIOSCIENCES, 2011, 130 (03) : 155 - 163
  • [3] Unsteady signal analysis by using wavelet transform
    Zhang, Z
    Kawabata, H
    [J]. 1997 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT PROCESSING SYSTEMS, VOLS 1 & 2, 1997, : 1237 - 1241
  • [4] Novel Photoplethysmographic Signal Analysis via Wavelet Scattering Transform
    Szczesna, Agnieszka
    Augustyn, Dariusz
    Josinski, Henryk
    Switonski, Adam
    Kasprowski, Pawel
    Harezlak, Katarzyna
    [J]. COMPUTATIONAL SCIENCE - ICCS 2022, PT III, 2022, 13352 : 641 - 653
  • [5] Radar signal recognition using Wavelet Transform and Machine Learning
    Walenczykowska, Marta
    Kawalec, Adam
    [J]. 2022 23RD INTERNATIONAL RADAR SYMPOSIUM (IRS), 2022, : 492 - 495
  • [6] Analysis of Facial EMG Signal for Emotion Recognition Using Wavelet Packet Transform and SVM
    Kehri, Vikram
    Ingle, Rahul
    Patil, Sangram
    Awale, R. N.
    [J]. MACHINE INTELLIGENCE AND SIGNAL ANALYSIS, 2019, 748 : 247 - 257
  • [7] Cavitation Signal Analysis Using Discrete Wavelet Transform
    Ramadevi, R.
    [J]. 2014 INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICCICCT), 2014, : 558 - 560
  • [8] Application of wavelet packet transform to signal recognition
    Zhang, GX
    Jin, WD
    Hu, LZ
    [J]. PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON INTELLIGENT MECHATRONICS AND AUTOMATION, 2004, : 542 - 547
  • [9] Chaotic biomedical time signal analysis via wavelet scattering transform
    Szczesna, Agnieszka
    Augustyn, Dariusz Rafal
    Josinski, Henryk
    Harezlak, Katarzyna
    Switonski, Adam
    Kasprowski, Pawel
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2023, 72
  • [10] Intelligent recognition of coal mine microseismic signal based on wavelet scattering decomposition transform
    Fan, Xin
    Cheng, Jianyuan
    Wang, Yunhong
    Li, Sheng
    Duan, Jianhua
    Wang, Pan
    [J]. Meitan Xuebao/Journal of the China Coal Society, 2022, 47 (07): : 2722 - 2731