FUNCTIONAL DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER WITH STATE-DEPENDENT DELAY

被引:0
|
作者
Darwish, Mohamed Abdalla [1 ]
Ntouyas, Sotiris K.
机构
[1] Alexandria Univ Damanhour, Fac Sci, Dept Math, Damanhour 22511, Egypt
来源
DYNAMIC SYSTEMS AND APPLICATIONS | 2009年 / 18卷 / 3-4期
关键词
STRUCTURED POPULATION-GROWTH; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the existence of solutions for the initial value problem for functional differential equations, as well as, for neutral functional differential equations of fractional order with state-dependent delay. The nonlinear alternative of Leray-Schauder type is the main tool in our analysis.
引用
收藏
页码:539 / 549
页数:11
相关论文
共 50 条
  • [1] SEMILINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER WITH STATE-DEPENDENT DELAY
    Darwish, Mohamed Abdalla
    Ntouyas, Sotiris K.
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2009,
  • [2] Fractional order partial hyperbolic functional differential equations with state-dependent delay
    Abbas, Saied
    Benchohra, Mouffak
    Zhou, Yong
    [J]. INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2011, 3 (04) : 459 - 490
  • [3] On second order differential equations with state-dependent delay
    Hernandez, Eduardo
    Azevedo, Katia A. G.
    O'Regan, Donal
    [J]. APPLICABLE ANALYSIS, 2018, 97 (15) : 2610 - 2617
  • [4] On fractional integro-differential equations with state-dependent delay
    Agarwal, Ravi P.
    de Andrade, Bruno
    Siracusa, Giovana
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) : 1143 - 1149
  • [5] Approximate Controllability of Fractional Differential Equations with State-Dependent Delay
    Sakthivel Rathinasamy
    Ren Yong
    [J]. Results in Mathematics, 2013, 63 : 949 - 963
  • [6] Approximate Controllability of Fractional Differential Equations with State-Dependent Delay
    Rathinasamy, Sakthivel
    Yong, Ren
    [J]. RESULTS IN MATHEMATICS, 2013, 63 (3-4) : 949 - 963
  • [7] CONTROLLABILITY OF SECOND-ORDER IMPULSIVE FUNCTIONAL DIFFERENTIAL EQUATIONS WITH STATE-DEPENDENT DELAY
    Arthi, Ganesan
    Balachandran, Krishnan
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (06) : 1271 - 1290
  • [8] Global Existence for Functional Differential Equations with State-Dependent Delay
    Benchohra, Mouffak
    Medjadj, Imene
    Nieto, Juan J.
    Prakash, P.
    [J]. JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [9] A note on partial functional differential equations with state-dependent delay
    Hernandez, Eduardo
    Prokopczyk, Andrea
    Ladeira, Luiz
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2006, 7 (04) : 510 - 519
  • [10] Approximate controllability of partial neutral functional differential systems of fractional order with state-dependent delay
    Yan, Zuomao
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2012, 85 (08) : 1051 - 1062