Algorithms for Q-ary Error-Correcting Codes with Partial Feedback and Limited Magnitude

被引:0
|
作者
Deppe, Christian [1 ]
Lebedev, Vladimir [2 ]
机构
[1] Tech Univ Munich, Inst Commun Engn, D-80333 Munich, Germany
[2] Russian Acad Sci, Kharkevich Inst Informat Transmiss Problems, Moscow 127051, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1109/isit.2019.8849837
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Berlekamp and Zigangirov completely determined the capacity error function for binary error correcting codes with noiseless feedback. It is still an unsolved problem if the upper bound for the capacity error function in the non-binary case of Ahlswede, Lebedev, and Deppe is sharp. We consider channels with limited magnitude and feedback. For several classes of these channels we completely determine the capacity error function. All our algorithms do not use all the feedback immediately. Furthermore, a special case of the problem is equivalent to Shannons zero-error problem.
引用
收藏
页码:2244 / 2248
页数:5
相关论文
共 50 条
  • [1] Algorithms for q-ary error-correcting codes with limited magnitude and feedback
    Deppe, Christian
    Lebedev, Vladimir
    [J]. DISCRETE MATHEMATICS, 2021, 344 (02)
  • [2] New lower bounds on q-ary error-correcting codes
    Antti Laaksonen
    Patric R. J. Östergård
    [J]. Cryptography and Communications, 2019, 11 : 881 - 889
  • [3] New lower bounds on q-ary error-correcting codes
    Laaksonen, Antti
    Ostergard, Patric R. J.
    [J]. CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (05): : 881 - 889
  • [4] Optimal, systematic q-ary codes correcting all asymmetric errors of limited magnitude
    Elarief, Noha
    Bose, Bella
    [J]. 2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 2704 - 2707
  • [5] Analysis of properties of q-ary Reed–Muller error-correcting codes viewed as codes for copyright protection
    V. M. Deundyak
    S. A. Yevpak
    V. V. Mkrtichyan
    [J]. Problems of Information Transmission, 2015, 51 : 398 - 408
  • [6] Optimal, Systematic, q-Ary Codes Correcting All Asymmetric and Symmetric Errors of Limited Magnitude
    Elarief, Noha
    Bose, Bella
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (03) : 979 - 983
  • [7] Unidirectional byte error correcting codes for q-ary data
    Saowapa, K
    Kaneko, H
    Fujiwara, E
    [J]. 2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, : 8 - 8
  • [8] Analysis of properties of q-ary Reed-Muller error-correcting codes viewed as codes for copyright protection
    Deundyak, V. M.
    Yevpak, S. A.
    Mkrtichyan, V. V.
    [J]. PROBLEMS OF INFORMATION TRANSMISSION, 2015, 51 (04) : 398 - 408
  • [9] Optimal q-Ary Error Correcting/All Unidirectional Error Detecting Codes
    Chee, Yeow Meng
    Zhang, Xiande
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (08) : 5806 - 5812
  • [10] Linear covering codes and error-correcting codes for limited-magnitude errors
    Torleiv Kløve
    Moshe Schwartz
    [J]. Designs, Codes and Cryptography, 2014, 73 : 329 - 354