Calcium dynamics on a stochastic reaction-diffusion lattice model

被引:8
|
作者
Guisoni, Nara
de Oliveira, Mario J.
机构
[1] Univ Vale Paraiba, Inst Pesquisa & Desenvolvimento, BR-12244000 Sao Jose Dos Campos, SP, Brazil
[2] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil
来源
PHYSICAL REVIEW E | 2006年 / 74卷 / 06期
关键词
D O I
10.1103/PhysRevE.74.061905
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study a stochastic reaction-diffusion lattice model for describing the calcium dynamics in the endoplasmic reticulum (ER) membrane. Calcium channels and calcium ions are placed in two interpenetrating square lattices which are connected by calcium release and diffusion. Calcium ions are released from the ER through the channels and they can both remain in the membrane or spontaneously leave the membrane into the cytosol. The state of the channel is modulated by calcium ions: a channel can be open, closed, or inactive. The model is studied by numerical simulations and mean field theory and exhibits a phase transition from an active state to an absorbing state which is the result of the catalytic calcium release. The critical behavior of the model is in the directed percolation universality class.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Coarse-graining Calcium Dynamics on Stochastic Reaction-diffusion Lattice Model
    Shen, Chuan-sheng
    Chen, Han-shuang
    [J]. CHINESE JOURNAL OF CHEMICAL PHYSICS, 2013, 26 (02) : 181 - 184
  • [2] On a reaction-diffusion model for calcium dynamics in dendritic spines
    Hamdache, Kamel
    Labadie, Mauricio
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (04) : 2478 - 2492
  • [3] A STOCHASTIC REACTION-DIFFUSION MODEL
    KOTELENEZ, P
    [J]. LECTURE NOTES IN MATHEMATICS, 1989, 1390 : 132 - 137
  • [4] Reaction-diffusion stochastic lattice model for a predator-prey system
    Rodrigues, Attila L.
    Tome, Tania
    [J]. BRAZILIAN JOURNAL OF PHYSICS, 2008, 38 (01) : 87 - 93
  • [5] Dynamics of a Stochastic Fractional Reaction-Diffusion Equation
    Liu, Linfang
    Fu, Xianlong
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (01): : 95 - 124
  • [6] A Lattice Boltzmann Model for Oscillating Reaction-Diffusion
    Rodriguez-Romo, Suemi
    Ibanez-Orozco, Oscar
    Sosa-Herrera, Antonio
    [J]. JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 2016, 41 (03) : 249 - 256
  • [7] LARGE DEVIATION PRINCIPLES OF STOCHASTIC REACTION-DIFFUSION LATTICE SYSTEMS
    Wang, Bixing
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (03): : 1319 - 1343
  • [8] DYNAMICS OF A STOCHASTIC FRACTIONAL NONLOCAL REACTION-DIFFUSION MODEL DRIVEN BY ADDITIVE NOISE
    LI, Lingyu
    Chen, Zhang
    Caraballo, Tomas
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (10): : 2530 - 2558
  • [9] Dynamics of Reaction-Diffusion Interfaces Under Stochastic Convection
    Careta, A.
    Sancho, J. M.
    Sagues, F.
    [J]. International Journal of Bifurcations and Chaos in Applied Sciences and Engineering, 1994, 415 (05):
  • [10] Stochastic and geometric aspects of reduced reaction-diffusion dynamics
    Cardin, Franco
    Favretti, Marco
    Lovison, Alberto
    Masci, Leonardo
    [J]. RICERCHE DI MATEMATICA, 2019, 68 (01) : 103 - 118