STARD3 mediates endoplasmic reticulum-to-endosome cholesterol transport at membrane contact sites

被引:187
|
作者
Wilhelm, Lea P. [1 ,2 ,3 ,4 ]
Wendling, Corinne [1 ,2 ,3 ,4 ]
Vedie, Benoit [5 ]
Kobayashi, Toshihide [4 ,6 ]
Chenard, Marie-Pierre [1 ,2 ,4 ,7 ]
Tomasetto, Catherine [1 ,2 ,3 ,4 ]
Drin, Guillaume [8 ]
Alpy, Fabien [1 ,2 ,3 ,4 ]
机构
[1] IGBMC, Funct Genom & Canc Dept, Illkirch Graffenstaden, France
[2] INSERM, U964, Illkirch Graffenstaden, France
[3] CNRS, UMR 7104, Illkirch Graffenstaden, France
[4] Univ Strasbourg, Illkirch Graffenstaden, France
[5] Hop Europeen Georges Pompidou, AP HP, Serv Biochim Paris, Paris, France
[6] CNRS, Lab Biophoton & Pharmacol, UMR 7213, Illkirch Graffenstaden, France
[7] Ctr Hosp Univ Hautepierre, Serv Anat Pathol Gen, Strasbourg, France
[8] Univ Cote Azur, CNRS, Inst Pharmacol Mol & Cellulaire, Valbonne, France
来源
EMBO JOURNAL | 2017年 / 36卷 / 10期
关键词
cholesterol; endoplasmic reticulum; endosome; lipid transfer protein; membrane contact site; ACUTE REGULATORY PROTEIN; PERFRINGOLYSIN-O; ER; MLN64; TRAFFICKING; CELLS; TETHER; LIPIDS; COLOCALIZATION; MITOCHONDRIA;
D O I
10.15252/embj.201695917
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
StAR-related lipid transfer domain-3 (STARD3) is a sterol-binding protein that creates endoplasmic reticulum (ER)-endosome contact sites. How this protein, at the crossroad between sterol uptake and synthesis pathways, impacts the intracellular distribution of this lipid was ill-defined. Here, by using in situ cholesterol labeling and quantification, we demonstrated that STARD3 induces cholesterol accumulation in endosomes at the expense of the plasma membrane. STARD3-mediated cholesterol routing depends both on its lipid transfer activity and its ability to create ER-endosome contacts. Corroborating this, in vitro reconstitution assays indicated that STARD3 and its ER-anchored partner, Vesicle-associated membrane protein-associated protein (VAP), assemble into a machine that allows a highly efficient transport of cholesterol within membrane contacts. Thus, STARD3 is a cholesterol transporter scaffolding ER-endosome contacts and modulating cellular cholesterol repartition by delivering cholesterol to endosomes.
引用
收藏
页码:1412 / 1433
页数:22
相关论文
共 50 条
  • [1] Endoplasmic Reticulum Membrane Contact Sites, Lipid Transport, and Neurodegeneration
    Guillen-Samander, Andres
    De Camilli, Pietro
    COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2023, 15 (04):
  • [2] Endoplasmic reticulum: Membrane contact sites
    Velikanov G.A.
    Cell and Tissue Biology, 2013, 7 (6) : 504 - 511
  • [3] SnapShot: Functions of Endoplasmic Reticulum Membrane Contact Sites
    Salvador-Gallego, Raquel
    Hoyer, Melissa J.
    Voeltz, Gia K.
    CELL, 2017, 171 (05) : 1224 - +
  • [4] Endoplasmic Reticulum-Plasma Membrane Contact Sites
    Saheki, Yasunori
    De Camilli, Pietro
    ANNUAL REVIEW OF BIOCHEMISTRY, VOL 86, 2017, 86 : 659 - 684
  • [5] Annexin A1 Tethers Membrane Contact Sites that Mediate ER to Endosome Cholesterol Transport
    Eden, Emily R.
    Sanchez-Heras, Elena
    Tsapara, Anna
    Sobota, Andrzej
    Levine, Tim P.
    Futter, Clare E.
    DEVELOPMENTAL CELL, 2016, 37 (05) : 473 - 483
  • [6] Endoplasmic reticulum-Golgi complex membrane contact sites
    De Matteis, Maria Antonietta
    Rega, Laura Rita
    CURRENT OPINION IN CELL BIOLOGY, 2015, 35 : 43 - 50
  • [7] Investigating membrane contact sites between the endoplasmic reticulum and phagosomes
    Nunes, P.
    ACTA PHYSIOLOGICA, 2014, 211 : 17 - 17
  • [8] Plant Endoplasmic Reticulum-Plasma Membrane Contact Sites
    Wang, Pengwei
    Hawes, Chris
    Hussey, Patrick J.
    TRENDS IN PLANT SCIENCE, 2017, 22 (04) : 289 - 297
  • [9] Supramolecular architecture of endoplasmic reticulum - plasma membrane contact sites
    Fernandez-Busnadiego, Ruben
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2016, 44 : 534 - 540
  • [10] Ceramide Transport from the Endoplasmic Reticulum to the Trans Golgi Region at Organelle Membrane Contact Sites
    Hanada, Kentaro
    ORGANELLE CONTACT SITES: FROM MOLECULAR MECHANISM TO DISEASE, 2017, 997 : 69 - 81