Robust motion blur kernel parameter estimation for star image deblurring

被引:5
|
作者
Chen, Xiyuan [1 ]
Liu, Di [1 ]
Zhang, Yu [1 ]
Liu, Xiao [1 ,2 ]
Xu, Yuan [3 ]
Shi, Chunfeng [1 ]
机构
[1] Southeast Univ, Sch Instrument Sci & Engn, Key Lab Microinertial Instrument & Adv Nav Techno, Minist Educ, Nanjing 210096, Jiangsu, Peoples R China
[2] Qilu Univ Technol, Sch Elect & Informat Engn, Dept Phys, Jinan 250353, Peoples R China
[3] Univ Jinan, Sch Elect Engn, Jinan 250022, Peoples R China
来源
OPTIK | 2021年 / 230卷
基金
中国国家自然科学基金;
关键词
Star sensor; Blur parameters estimation; Signal processing; REGULARIZATION; DECONVOLUTION; RESTORATION;
D O I
10.1016/j.ijleo.2021.166288
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Under dynamic conditions, the star images may be blurred and result in the decrease of attitude measurement accuracy of the star sensor. To estimate blur kernel parameters needed for star image deblurring, including blur angle and blur length, a method based on sparse representation, hyper-Laplacian priors, and ensemble neural network is proposed. First, under the constraint of the hyper-Laplacian image prior, the blur angle is estimated by using the quasi-convex characteristics between the sparse representation coefficients and the blur angle. Then, the ensemble back-propagation neural network trained by the bagging method is exploited to estimate the blur length. Finally, we recover the star image by a non-blind deblurring algorithm. To validate the proposed algorithm, we test the algorithm on star images and compare the algorithm with several existing deconvolution algorithms. The results reveal that our approach outperforms other algorithms in terms of effectiveness and robustness.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Robust Image Deblurring With an Inaccurate Blur Kernel
    Ji, Hui
    Wang, Kang
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (04) : 1624 - 1634
  • [2] Image Deblurring with Blur Kernel Estimation in RGB Channels
    Xu, Xianqiu
    Liu, Honqing
    Li, Yong
    Zhou, Yi
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2016, : 681 - 684
  • [3] Automatic blur-kernel-size estimation for motion deblurring
    Shaoguo Liu
    Haibo Wang
    Jue Wang
    Sunghyun Cho
    Chunhong Pan
    [J]. The Visual Computer, 2015, 31 : 733 - 746
  • [4] Automatic blur-kernel-size estimation for motion deblurring
    Liu, Shaoguo
    Wang, Haibo
    Wang, Jue
    Cho, Sunghyun
    Pan, Chunhong
    [J]. VISUAL COMPUTER, 2015, 31 (05): : 733 - 746
  • [5] Image Deblurring with Blur Kernel Estimation from a Reference Image Patch
    Huang, Po-Hao
    Lin, Yu-Mo
    Lai, Shang-Hong
    [J]. 19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 1239 - 1242
  • [6] Space-Varying Blur Kernel Estimation and Image Deblurring
    Qian, Qinchun
    Gunturk, Bahadir K.
    [J]. DIGITAL PHOTOGRAPHY X, 2014, 9023
  • [7] Robust Motion Blur Kernel Estimation by Kernel Continuity Prior
    Chen, Xueling
    Zhu, Yu
    Sun, Jinqiu
    Zhang, Yanning
    [J]. IEEE ACCESS, 2020, 8 : 46162 - 46175
  • [8] Blind motion image deblurring using an effective blur kernel prior
    Javaran, Taiebeh Askari
    Hassanpour, Hamid
    Abolghasemi, Vahid
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (16) : 22555 - 22574
  • [9] A Blur-SURE-Based Approach to Kernel Estimation for Motion Deblurring
    Li, Jing
    [J]. PATTERN RECOGNITION AND IMAGE ANALYSIS, 2019, 29 (02) : 240 - 251
  • [10] Blind motion image deblurring using an effective blur kernel prior
    Taiebeh Askari Javaran
    Hamid Hassanpour
    Vahid Abolghasemi
    [J]. Multimedia Tools and Applications, 2019, 78 : 22555 - 22574