Surface modification of additive manufactured Ti6Al4V alloy with Ag nanoparticles: wettability and surface morphology study

被引:2
|
作者
Chudinova, E. [1 ]
Surmeneva, M. [1 ]
Koptioug, A. [2 ]
Sharonova, A. [1 ]
Loza, K. [3 ,4 ]
Surmenev, R. [1 ]
机构
[1] Tomsk Polytech Univ, Inst Phys & Technol, 30 Lenina Ave, Tomsk 634050, Russia
[2] Mid Sweden Univ, Akad Gatan 1, SE-83125 Ostersund, Sweden
[3] Univ Duisburg Essen, Inorgan Chem, D-45117 Essen, Germany
[4] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CeNIDE, D-45117 Essen, Germany
关键词
SILVER NANOPARTICLES; FABRICATION; TITANIUM; IMPLANTS;
D O I
10.1088/1757-899X/116/1/012004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, the use of electrophoretic deposition to modify the surface of Ti6Al4V alloy fabricated via additive manufacturing technology is reported. Poly(vinylpyrrolidone) (PVP)-stabilized silver nanoparticles (AgNPs) had a spherical shape with a diameter of the metallic core of 100 +/- 20 nm and zeta-potential -15 mV. The AgNPs-coated Ti6Al4V alloy was studied in respect with its chemical composition and surface morphology, water contact angle, hysteresis, and surface free energy. The results of SEM microphotography analysis showed that the AgNPs were homogeneously distributed over the surface. Hysteresis and water contact angle measurements revealed the effect of the deposited AgNPs layer, namely an increased water contact angle and decreased contact angle hysteresis. However, the average water contact angle was 125 degrees for PVP-stabilized-AgNPs-coated surface, whereas ethylene glycol gave the average contact angle of 17 degrees. A higher surface energy is observed for AgNPs-coated Ti6Al4V surface (70.17 mN/m) compared with the uncoated surface (49.07 mN/m).
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Modification of surface morphology of Ti6Al4V alloy manufactured by Laser Sintering
    Draganovska, Dagmar
    Izarikova, Gabriela
    Guzanova, Anna
    Brezinova, Janette
    Koncz, Juraj
    OPEN ENGINEERING, 2016, 6 (01): : 164 - 173
  • [2] Effect of surface treatment on the fatigue strength of additive manufactured Ti6Al4V alloy
    Navarro, Carlos
    Vazquez, Jesus
    Dominguez, Jaime
    Perinan, Antonio
    Herrera Garcia, Marta
    Lasagni, Fernando
    Bernarding, Simon
    Slawik, Sebastian
    Muecklich, Frank
    Boby, Francisco
    Hackel, Lloyd
    FRATTURA ED INTEGRITA STRUTTURALE, 2020, 14 (53): : 337 - 344
  • [3] Surface Roughness and Morphology Customization of Additive Manufactured Open Porous Ti6Al4V Structures
    Pyka, Grzegorz
    Kerckhofs, Greet
    Papantoniou, Ioannis
    Speirs, Mathew
    Schrooten, Jan
    Wevers, Martine
    MATERIALS, 2013, 6 (10) : 4737 - 4757
  • [4] Effect Of Surface Roughness On The Fatigue Life Of Laser Additive Manufactured Ti6al4v Alloy
    Bača, Adrián
    Konečná, Radomila
    Nicoletto, Gianni
    Kunz, Ludvík
    Manufacturing Technology, 2015, 15 (04): : 4 - 4
  • [5] Micromilling-induced Surface Integrity of Porous Additive Manufactured Ti6Al4V Alloy
    Varghese, Vinay
    Mujumdar, Soham
    49TH SME NORTH AMERICAN MANUFACTURING RESEARCH CONFERENCE (NAMRC 49, 2021), 2021, 53 : 387 - 394
  • [6] Investigation on surface quality in micro milling of additive manufactured Ti6Al4V titanium alloy
    Wu, Xian
    Chen, Zhongwei
    Ke, Wenchang
    Jiang, Feng
    Zhao, Meng
    Li, Liang
    Shen, Jianyun
    Zhu, Laifa
    JOURNAL OF MANUFACTURING PROCESSES, 2023, 101 : 446 - 457
  • [7] Surface Modification and Bioactivity of Anodic Ti6Al4V Alloy
    Saharudin, Khairul Arifah
    Sreekantan, Srimala
    Abd Aziz, Siti Nor Qurratu Aini
    Hazan, Roshasnorlyza
    Lai, Chin Wei
    Mydin, Rabiatul Basria S. M. N.
    Mat, Ishak
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2013, 13 (03) : 1696 - 1705
  • [8] Surface Modification of Ti6Al4V Alloy by Pack Boriding
    Atar, Erdem
    Kayali, E. Sabri
    Cimenoglu, Huseyin
    TMS 2009 138TH ANNUAL MEETING & EXHIBITION - SUPPLEMENTAL PROCEEDINGS, VOL 3: GENERAL PAPER SELECTIONS, 2009, : 601 - +
  • [9] Improving surface integrity and corrosion resistance of additive manufactured Ti6Al4V alloy by cryogenic machining
    Bertolini, R.
    Lizzul, L.
    Pezzato, L.
    Ghiotti, A.
    Bruschi, S.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 104 (5-8): : 2839 - 2850
  • [10] Improving surface integrity and corrosion resistance of additive manufactured Ti6Al4V alloy by cryogenic machining
    R. Bertolini
    L. Lizzul
    L. Pezzato
    A. Ghiotti
    S. Bruschi
    The International Journal of Advanced Manufacturing Technology, 2019, 104 : 2839 - 2850