DeepBindRG: a deep learning based method for estimating effective protein-ligand affinity

被引:64
|
作者
Zhang, Haiping [1 ]
Liao, Linbu [1 ]
Saravanan, Konda Mani [1 ]
Yin, Peng [1 ]
Wei, Yanjie [1 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Joint Engn Res Ctr Hlth Big Data Intelligent Anal, Shenzhen, Guangdong, Peoples R China
来源
PEERJ | 2019年 / 7卷
基金
美国国家科学基金会;
关键词
Protein-ligand binding affinity; ResNet; Deep neural network; Native-like protein-ligand complex; Drug design; SCORING FUNCTIONS; DOCKING; OPTIMIZATION; DRUGS; LEAD; SET;
D O I
10.7717/peerj.7362
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Proteins interact with small molecules to modulate several important cellular functions. Many acute diseases were cured by small molecule binding in the active site of protein either by inhibition or activation. Currently, there are several docking programs to estimate the binding position and the binding orientation of protein-ligand complex. Many scoring functions were developed to estimate the binding strength and predict the effective protein-ligand binding. While the accuracy of current scoring function is limited by several aspects, the solvent effect, entropy effect, and multibody effect are largely ignored in traditional machine learning methods. In this paper, we proposed a new deep neural network-based model named DeepBindRG to predict the binding affinity of protein-ligand complex, which learns all the effects, binding mode, and specificity implicitly by learning protein-ligand interface contact information from a large protein-ligand dataset. During the initial data processing step, the critical interface information was preserved to make sure the input is suitable for the proposed deep learning model. While validating our model on three independent datasets, DeepBindRG achieves root mean squared error (RMSE) value of pKa (-logK(d) or -logK(i)) about 1.6-1.8 and R value around 0.5-0.6, which is better than the autodock vina whose RMSE value is about 2.2-2.4 and R value is 0.42-0.57. We also explored the detailed reasons for the performance of DeepBindRG, especially for several failed cases by vina. Furthermore, DeepBindRG performed better for four challenging datasets from DUD.E database with no experimental protein-ligand complexes. The better performance of DeepBindRG than autodock vina in predicting protein-ligand binding affinity indicates that deep learning approach can greatly help with the drug discovery process. We also compare the performance of DeepBindRG with a 4D based deep learning method "pafnucy", the advantage and limitation of both methods have provided clues for improving the deep learning based protein-ligand prediction model in the future.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Protein-Ligand Binding Affinity Prediction Based on Deep Learning
    Lu, Yaoyao
    Liu, Junkai
    Jiang, Tengsheng
    Guan, Shixuan
    Wu, Hongjie
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2022, PT II, 2022, 13394 : 310 - 316
  • [2] DeepDTAF: a deep learning method to predict protein-ligand binding affinity
    Wang, Kaili
    Zhou, Renyi
    Li, Yaohang
    Li, Min
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
  • [3] Prediction of protein-ligand binding affinity with deep learning
    Wang, Yuxiao
    Jiao, Qihong
    Wang, Jingxuan
    Cai, Xiaojun
    Zhao, Wei
    Cui, Xuefeng
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 5796 - 5806
  • [4] Deep Learning in Drug Design: Protein-Ligand Binding Affinity Prediction
    Rezaei, Mohammad A.
    Li, Yanjun
    Wu, Dapeng
    Li, Xiaolin
    Li, Chenglong
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (01) : 407 - 417
  • [5] Prediction of protein-ligand binding affinity via deep learning models
    Wang, Huiwen
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (02)
  • [6] DEELIG: A Deep Learning Approach to Predict Protein-Ligand Binding Affinity
    Ahmed, Asad
    Mam, Bhavika
    Sowdhamini, Ramanathan
    BIOINFORMATICS AND BIOLOGY INSIGHTS, 2021, 15
  • [7] SCORE: A new empirical method for estimating the binding affinity of a protein-ligand complex
    Wang, RX
    Liu, L
    Lai, LH
    Tang, YQ
    JOURNAL OF MOLECULAR MODELING, 1998, 4 (12) : 379 - 394
  • [8] SCORE: A New Empirical Method for Estimating the Binding Affinity of a Protein-Ligand Complex
    Renxiao Wang
    Liang Liu
    Luhua Lai
    Youqi Tang
    Molecular modeling annual, 1998, 4 : 379 - 394
  • [9] Structure-based, deep-learning models for protein-ligand binding affinity prediction
    Debby D. Wang
    Wenhui Wu
    Ran Wang
    Journal of Cheminformatics, 16
  • [10] A point cloud-based deep learning strategy for protein-ligand binding affinity prediction
    Wang, Yeji
    Wu, Shuo
    Duan, Yanwen
    Huang, Yong
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)