Mitochondrial Ca2+ flux is a critical determinant of the Ca2+ dependence of mast cell degranulation

被引:38
|
作者
Suzuki, Yoshihiro [1 ]
Yoshimaru, Tetsuro [1 ]
Inoue, Toshio [1 ]
Ra, Chisei [1 ]
机构
[1] Nihon Univ, Grad Sch Med Sci, Adv Med Res Ctr, Div Mol Cell Immunol & Allergol,Itabashi Ku, Tokyo 1738610, Japan
关键词
signal transduction; Ca2+; mitochondria; permeability transition pore;
D O I
10.1189/jlb.0705412
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
An increase in intracellular Ca2+ ([Ca2+](i)) is necessary for mast cell exocytosis, but there is controversy over the requirement for Ca2+ in the extracellular medium. Here, we demonstrate that mitochondrial function is a critical determinant of Ca2+ dependence. In the presence of extracellular Ca2+, mitochondrial metabolic inhibitors, including rotenone, antimycin A, and the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), significantly reduced degranulation induced by immunoglobulin E (IgE) antigen or by thapsigargin, as measured by beta-hexosaminidase release. In the absence of extracellular Ca2+; however, antimycin A and FCCP, but not rotenone, enhanced, rather than reduced, degranulation to a maximum of 76% of that observed in the presence of extracellular Ca2+. This enhancement of extracellular, Ca2+-independent degranulation was concomitant with a rapid collapse of the mitochondrial transmembrane potential. Mitochondrial depolarization did not enhance degranulation induced by thapsigargin, irrespective of 2+ the presence or absence of extracellular Ca2+. IgE antigen was more effective than thapsigargin as an inducer of [Ca2+](i) release, and mitochondrial depolarization augmented IgE-mediated but not thapsigar-induced Ca2+ store release and mitochondrial Ca2+ ([Ca2+](m)) release. Finally, atractyloside and bongkrekic acid [an agonist and an antagonist, respectively, of the mitochondrial permeability transition pore (mPTP)], resgectively, augmented and reduced IgE-mediated Ca2+ store release, [Ca2+]. release, and/or degranulation, whereas they had no effects on thapsigargin-induced Ca2+ store release. These data suggest that the mPTP is involved in the regulation of Ca2+ signaling, thereby affecting the mode of mast cell degranulation. This finding may shed light on a new role for mitochondria in the regulation of mast cell activation.
引用
收藏
页码:508 / 518
页数:11
相关论文
共 50 条
  • [1] Mitochondrial Ca2+ flux through Na+/Ca2+ exchange
    Kim, Bongyu
    Matsuoka, Satoshi
    SODIUM-CALCIUM EXCHANGE AND THE PLASMA MEMBRANE CA2+-ATPASE IN CELL FUNCTION: FIFTH INTERNATIONAL CONFERENCE, 2007, 1099 : 507 - 511
  • [2] Microtubule depolymerization inhibits mast cell degranulation by decrease in Ca2+ influx
    Oka, T
    Hori, M
    Ozaki, H
    JOURNAL OF PHARMACOLOGICAL SCIENCES, 2005, 97 : 131P - 131P
  • [3] Ca2+ release flux underlying Ca2+ transients and Ca2+ sparks in skeletal muscle
    Ríos, E
    Brum, G
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2002, 7 : D1195 - D1211
  • [4] Fluvastatin inhibits mast cell degranulation without changing the cytoplasmic Ca2+ level
    Fujimoto, Masanori
    Oka, Tatsuya
    Murata, Takahisa
    Hori, Masatoshi
    Ozaki, Hiroshi
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2009, 602 (2-3) : 432 - 438
  • [5] Regulation of Intracellular Ca2+ Waves and Triggered Activities by Mitochondrial Ca2+ Flux in Mouse Cardiomyocytes
    Zhao, Zhenghang
    Fefelova, Nadezhda
    Xie, Lai-Hua
    CIRCULATION, 2010, 122 (21)
  • [6] Routes of Ca2+ Shuttling during Ca2+ Oscillations FOCUS ON THE ROLE OF MITOCHONDRIAL Ca2+ HANDLING AND CYTOSOLIC Ca2+ BUFFERS
    Pecze, Laszlo
    Blum, Walter
    Schwaller, Beat
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2015, 290 (47) : 28214 - 28230
  • [7] Effect of extramitochondrial Ca2+ on mitochondrial matrix Ca2+ concentration
    Szabadkai, G
    Pitter, JG
    Spät, A
    JOURNAL OF PHYSIOLOGY-LONDON, 2000, 526 : 6P - 6P
  • [8] Mitochondrial Ca2+ Uptake; Regulation by Ca2+, Inhibition by Minocyclin
    Csordas, Gyoergy
    Golenar, Tuende
    Hajnoczky, Gyoergy
    BIOPHYSICAL JOURNAL, 2011, 100 (03) : 44 - 44
  • [9] Mitochondrial VDAC, the Na+/Ca2+ Exchanger, and the Ca2+ Uniporter in Ca2+ Dynamics and Signaling
    Shoshan-Barmatz, Varda
    De, Soumasree
    MEMBRANE DYNAMICS AND CALCIUM SIGNALING, 2017, 981 : 323 - 347
  • [10] Mitochondrial Ca2+-induced Ca2+ release mediated by the Ca2+ uniporter
    Montero, M
    Alonso, MT
    Albillos, A
    García-Sancho, J
    Alvarez, J
    MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (01) : 63 - 71