Finite-time synchronization and parameter identification of fractional-order Lorenz chaotic system

被引:0
|
作者
Shao, Keyong [1 ]
Zhou, Liyuan [1 ]
Guo, Ilaoxuan [1 ]
Xu, Zihui [1 ]
Chen, Ruoyu [1 ]
机构
[1] Northeast Petr Univ, Sch Elect Informat Engn, Daqing 163318, Peoples R China
关键词
fractional-order Lorenz chaotic system; finite-time synchronization; parameter identification; STABILIZATION; STABILITY;
D O I
10.23919/chicc.2019.8866542
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the finite-time synchronization and parameter identification of fractional-order Lorenz chaotic systems with uncertain parameters. Based on the Lyapunov stability theory, a finite-time controller and parameter correction laws are designed. The finite-time synchronization of fractional-order Lorenz chaotic systems is achieved. Moreover, all uncertain parameters of the fractional-order Lorenz system are also identified. Finally, numerical simulation results are provided to demonstrate the effectiveness of the proposed control scheme.
引用
收藏
页码:1120 / 1124
页数:5
相关论文
共 50 条
  • [1] Finite-time synchronization and parameter identification of uncertain fractional-order complex networks
    Li, Hong-Li
    Cao, Jinde
    Jiang, Haijun
    Alsaedi, Ahmed
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 533
  • [2] Multi-scroll fractional-order chaotic system and finite-time synchronization
    Yan, Shaohui
    Wang, Qiyu
    Wang, Ertong
    Sun, Xi
    Song, Zhenlong
    [J]. PHYSICA SCRIPTA, 2022, 97 (02)
  • [3] Finite-time synchronization of fractional-order chaotic system based on hidden attractors
    Yan, Shaohui
    Zhang, Hanbing
    Jiang, Defeng
    Jiang, Jiawei
    Cui, Yu
    Zhang, Yuyan
    [J]. PHYSICA SCRIPTA, 2023, 98 (10)
  • [4] Projective synchronization and parameter identification of a fractional-order chaotic system
    Kong De-fu
    Zhao Xiao-shan
    [J]. PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING AND INTELLIGENT SYSTEMS (ICMEIS 2015), 2015, 26 : 880 - 883
  • [5] Control and Synchronization of the Fractional-Order Lorenz Chaotic System via Fractional-Order Derivative
    Zhou, Ping
    Ding, Rui
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
  • [6] Parameter identification and synchronization of fractional-order chaotic systems
    Yuan, Li-Guo
    Yang, Qi-Gui
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (01) : 305 - 316
  • [7] CHAOTIC SYNCHRONIZATION OF FRACTIONAL-ORDER SPATIOTEMPORAL COUPLED LORENZ SYSTEM
    Wang, Xing-Yuan
    Zhang, Hao
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2012, 23 (10):
  • [8] Finite-time parameter identification of fractional-order time-varying delay neural networks based on synchronization
    Yang, Fan
    Wang, Wen
    Li, Lixiang
    Zheng, Mingwen
    Zhang, Yanping
    Liang, Zhenying
    [J]. CHAOS, 2023, 33 (03)
  • [9] Finite-time parameter identification of fractional-order uncertain coupling recurrent neural networks based on synchronization
    Qu, Xilong
    Zhang, Yanping
    Wei, Yanxing
    Wei, Zhengjun
    Zheng, Mingwen
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021,
  • [10] Finite-Time Projective Synchronization and Parameter Identification of Fractional-Order Complex Networks with Unknown External Disturbances
    Wang, Shuguo
    Zheng, Song
    Cui, Linxiang
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (06)