Semiclassical Soliton Ensembles for the Three-Wave Resonant Interaction Equations

被引:8
|
作者
Buckingham, R. J. [1 ]
Jenkins, R. M. [2 ]
Miller, P. D. [3 ]
机构
[1] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45220 USA
[2] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[3] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
NONLINEAR SCHRODINGER-EQUATION; SMALL DISPERSION LIMIT; SPACE-TIME EVOLUTION; DE-VRIES EQUATION; INVERSE SCATTERING; WAVE-PACKETS; UNIVERSALITY; ASYMPTOTICS; MODULATION; GENERATION;
D O I
10.1007/s00220-017-2897-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The three-wave resonant interaction equations are a non-dispersive system of partial differential equations with quadratic coupling describing the time evolution of the complex amplitudes of three resonant wave modes. Collisions of wave packets induce energy transfer between different modes via pumping and decay. We analyze the collision of two or three packets in the semiclassical limit by applying the inverse-scattering transform. Using WKB analysis, we construct an associated semiclassical soliton ensemble, a family of reflectionless solutions defined through their scattering data, intended to accurately approximate the initial data in the semiclassical limit. The map from the initial packets to the soliton ensemble is explicit and amenable to asymptotic and numerical analysis. Plots of the soliton ensembles indicate the space-time plane is partitioned into regions containing either quiescent, slowly varying, or rapidly oscillatory waves. This behavior resembles the well-known generation of dispersive shock waves in equations such as the Korteweg-de Vries and nonlinear Schrodinger equations, although the physical mechanism must be different in the absence of dispersion.
引用
收藏
页码:1015 / 1100
页数:86
相关论文
共 50 条
  • [1] Semiclassical Soliton Ensembles for the Three-Wave Resonant Interaction Equations
    R. J. Buckingham
    R. M. Jenkins
    P. D. Miller
    Communications in Mathematical Physics, 2017, 354 : 1015 - 1100
  • [2] Novel soliton solutions for the fractional three-wave resonant interaction equations
    Alqaraleh, Sahar M.
    Talafha, Adeeb G.
    DEMONSTRATIO MATHEMATICA, 2022, 55 (01) : 490 - 505
  • [3] The Three-Wave Resonant Interaction Equations: Spectral and Numerical Methods
    Antonio Degasperis
    Matteo Conforti
    Fabio Baronio
    Stefan Wabnitz
    Sara Lombardo
    Letters in Mathematical Physics, 2011, 96 : 367 - 403
  • [4] The Three-Wave Resonant Interaction Equations: Spectral and Numerical Methods
    Degasperis, Antonio
    Conforti, Matteo
    Baronio, Fabio
    Wabnitz, Stefan
    Lombardo, Sara
    LETTERS IN MATHEMATICAL PHYSICS, 2011, 96 (1-3) : 367 - 403
  • [5] Three-wave resonant interaction involving unstable wave packets
    S. Yu. Annenkov
    N. N. Romanova
    Doklady Physics, 2003, 48 : 441 - 446
  • [6] Three-wave resonant interaction involving unstable wave packets
    Annenkov, SY
    Romanova, NN
    DOKLADY PHYSICS, 2003, 48 (08) : 441 - 446
  • [7] Tunable soliton-induced resonant radiation by three-wave mixing
    Zhou, B. B.
    Liu, X.
    Guo, H. R.
    Zeng, X. L.
    Chen, X. F.
    Chung, H. P.
    Chen, Y. H.
    Bache, M.
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2017,
  • [8] THREE-WAVE INTERACTION EQUATIONS: CLASSICAL AND NONLOCAL
    Ablowitz, Mark J.
    Luo, Xu-Dan
    Musslimani, Ziad H.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (04) : 4089 - 4139
  • [9] Three-wave soliton interaction of ultrashort pulses in quadratic media
    Ibragimov, E
    Struthers, A
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1997, 14 (06) : 1472 - 1479
  • [10] Stabilization of a linearly unstable wave participating in a three-wave resonant interaction
    Romanova, N. N.
    Yakushkin, I. G.
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2010, 46 (03) : 360 - 368