A Pareto evolutionary artificial neural networks approach for remote sensing image classification

被引:0
|
作者
Liu, Fujiang [1 ,2 ]
Wu, Xincai [2 ]
Guo, Yan [3 ]
Sun, Huashan [4 ]
Zhou, Feng [2 ]
Mei, Linlu [2 ]
机构
[1] China Univ Geosci, Sch Earth Sci & Resources, Beijing 100083, Peoples R China
[2] China Univ Geosci, Fac Informat Engn, Wuhan 430074, Peoples R China
[3] China Univ Geosci, Sch Comp, Wuhan 430074, Peoples R China
[4] China Univ Geosci, Fac Resources, Wuhan 430074, Peoples R China
关键词
evolutionary neural networks; multiobjective optimization; remote sensing image classification;
D O I
10.1117/12.713258
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This paper presents a Pareto evolutionary artificial neural network (Pareto-EANN) approach based on the evolutionary algorithms for multiobjective optimization augmented with local search for the classification of remote sensing image. Its novelty lies in the use of a multiobjective genetic algorithm where single hidden layers Multilayer Perceptrons (MLP) are employed to indicate the accuracy/complexity trade-off Some advantages of this approach include the ability to accommodate multiple criteria such as accuracy of the classifier and number of hidden units. We compared Pareto-EANN classifiers results of the classification of remote sensing image against standard backpropagation neural network classifiers and EANN classifiers; we show experimentally the efficiency of the proposed methodology.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Deep Neural Networks for Remote Sensing Image Classification
    Miniello, Giorgia
    La Salandra, Marco
    Vino, Gioacchino
    [J]. INTELLIGENT COMPUTING, VOL 2, 2022, 507 : 117 - 128
  • [2] Recurrent neural networks for remote sensing image classification
    Lakhal, Mohamed Ilyes
    Cevikalp, Hakan
    Escalera, Sergio
    Ofli, Ferda
    [J]. IET COMPUTER VISION, 2018, 12 (07) : 1040 - 1045
  • [3] A new ART neural networks for remote sensing image classification
    Liu, AF
    Li, BC
    Chen, G
    Zhang, XF
    [J]. ADVANCES IN NATURAL COMPUTATION, PT 2, PROCEEDINGS, 2005, 3611 : 37 - 42
  • [4] Adaptive Granular Neural Networks for Remote Sensing Image Classification
    Kumar, D. Arun
    Meher, Saroj K.
    Kumari, K. Padma
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (06) : 1848 - 1857
  • [5] DYNAMIC GRANULAR NEURAL NETWORKS FOR REMOTE SENSING IMAGE CLASSIFICATION
    Kumar, D. Arun
    Kumari, K. Padma
    Meher, Saroj K.
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 3708 - 3711
  • [6] FULLY CONVOLUTIONAL NEURAL NETWORKS FOR REMOTE SENSING IMAGE CLASSIFICATION
    Maggiori, Emmanuel
    Tarabalka, Yuliya
    Charpiat, Guillaume
    Alliez, Pierre
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5071 - 5074
  • [7] Novel artificial neural networks for remote-sensing data classification
    Tao, XL
    Michel, HE
    [J]. Optics and Photonics in Global Homeland Security, 2005, 5781 : 127 - 138
  • [8] Artificial Neural Networks and Remote Sensing
    Jensen, Ryan R.
    Hardin, Perry J.
    Yu, Genong
    [J]. GEOGRAPHY COMPASS, 2009, 3 (02): : 630 - 646
  • [9] Opening the black box of neural networks for remote sensing image classification
    Qiu, F
    Jensen, JR
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2004, 25 (09) : 1749 - 1768
  • [10] Remote sensing image classification based on evidence theory and neural networks
    Chen, G
    Li, BC
    Guo, ZG
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2004, PT 1, 2004, 3173 : 971 - 976