Quantum energies of strings in a (2+1)-dimensional gauge theory

被引:11
|
作者
Graham, N.
Quandt, M.
Schroeder, O.
Weigel, H. [1 ]
机构
[1] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany
[2] Sci & Comp Ag, D-72070 Tubingen, Germany
[3] Univ Tubingen, Inst Theoret Phys, D-72076 Tubingen, Germany
[4] Middlebury Coll, Dept Phys, Middlebury, VT 05753 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.nuclphysb.2006.09.021
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study classically unstable string type configurations and compute the renormalized vacuum polarization energies that arise from fermion fluctuations in a (2 + 1)-dimensional analog of the standard model. We then search for a minimum of the total energy (classical plus vacuum polarization energies) by varying the profile functions that characterize the string. We find that typical string configurations bind numerous fermions and that populating these levels is beneficial to further decrease the total energy. Ultimately our goal is to explore the stabilization of string type configurations in the standard model through quantum effects. We compute the vacuum polarization energy within the phase shift formalism which identifies terms in the Born series for scattering data and Feynman diagrams. This approach allows us to implement standard renormalization conditions of perturbation theory and thus yields the unambiguous result for this non-perturbative contribution to the total energy. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:112 / 143
页数:32
相关论文
共 50 条
  • [1] (2+1)-DIMENSIONAL ABELIAN LATTICE GAUGE THEORY
    BAAQUIE, BE
    [J]. PHYSICAL REVIEW D, 1977, 16 (10): : 3040 - 3046
  • [2] Conformal gauge theory of (2+1)-dimensional gravity
    Stedile, E
    Duarte, R
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (03) : 1485 - 1500
  • [3] POINCARE GAUGE-THEORY OF (2+1)-DIMENSIONAL GRAVITY
    KAWAI, T
    [J]. PHYSICAL REVIEW D, 1994, 49 (06): : 2862 - 2871
  • [4] Matter fields near quantum critical point in (2+1)-dimensional U(1) gauge theory
    Liu, Guo-Zhu
    Li, Wei
    Cheng, Geng
    [J]. NUCLEAR PHYSICS B, 2010, 825 (03) : 303 - 319
  • [5] (2+1)-dimensional compact Lifshitz theory, tensor gauge theory, and fractons
    Gorantla, Pranay
    Lam, Ho Tat
    Seiberg, Nathan
    Shao, Shu-Heng
    [J]. PHYSICAL REVIEW B, 2023, 108 (07)
  • [6] A (2+1)-DIMENSIONAL MODEL FOR QUANTUM THEORY OF GRAVITY
    LEUTWYLER, H
    [J]. NUOVO CIMENTO A, 1966, 42 (01): : 159 - +
  • [7] Vacuum effects in (2+1)-dimensional topological massive gauge theory
    Zhukovsky, VC
    Peskov, NA
    [J]. PHYSICS OF ATOMIC NUCLEI, 2001, 64 (08) : 1531 - 1540
  • [8] Hopf symmetry breaking and confinement in (2+1)-dimensional gauge theory
    Bais, AF
    Schroers, BJ
    Slingerland, JK
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2003, (05):
  • [9] Vacuum effects in (2+1)-dimensional topological massive gauge theory
    V. Ch. Zhukovsky
    N. A. Peskov
    [J]. Physics of Atomic Nuclei, 2001, 64 : 1531 - 1540
  • [10] Spin resolution of glueballs in (2+1)-dimensional lattice gauge theory
    Johnson, RW
    [J]. PHYSICAL REVIEW D, 2002, 66 (07):