In order to identify the proteins associated with Helicobacterpylori colonization in mice, we used 2-dimensional gel electrophoresis (2-DE) to analyze the membrane- and soluble-cellular proteins extracted from H. pylori strain 26695 and the mouse-passaged homolog 88-3887. We defined 2- and 3-fold changes in protein expression as the threshold values for differential expression in the membrane-protein and whole-cell-protein fractions, respectively. The differentially expressed proteins were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF). A total of 29 proteins, including 16 membrane- or membrane-associated proteins (13 upregulated, 3 downregulated) and 13 cellular proteins (10 upregulated, 3 downregulated) were differentially expressed between the strains 26695 and 88-3887. Among the upregulated. proteins, 10 proteins had been previously shown to be associated with the mouse colonization, and 13 upregulated proteins were shown to be associated with the adaptation of H. pylori in murine hosts for the first time in this study. The identified proteins were classified as proteins related to metabolism, stress response, virulence, or adhesion. The data presented in this report indicated that there were subsets of upregulated proteins in mouse-adapted H. pylori. In particular, the adhesins, virulence factors, and stress-response proteins are likely to contribute to colonization in mice.