Cotilting bimodules and their dualities

被引:0
|
作者
Colpi, R [1 ]
机构
[1] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35131 Padua, Italy
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Brenner and Butler theorem allows us to read tilting theory as a far reaching generalization of Morita theory, where the equivalence concerns torsion and torsion-free classes rather than the whole module categories. Here we present some steps for a dual theory. First we introduce the notion of a cotilting bimodule (S)U(R) as a dual of a tilting bimodule. Then we show that this theory generalizes Morita dualities: namely, (S)U(R) cogenerates torsion theories in Mod-R and S-Mod, and it defines four functors realizing dualities between nice subcategories of torsion and torsion-free modules, respectively.
引用
收藏
页码:81 / 93
页数:13
相关论文
共 50 条
  • [1] Cotilting modules and bimodules
    Colpi, R
    Fuller, KR
    PACIFIC JOURNAL OF MATHEMATICS, 2000, 192 (02) : 275 - 291
  • [2] Partial tilting and cotilting bimodules
    Archetti, Maria
    Tonolo, Alberto
    JOURNAL OF ALGEBRA, 2006, 305 (01) : 321 - 359
  • [3] Cotilting objects and dualities
    Wisbauer, R
    REPRESENTATIONS OF ALGEBRAS, PROCEEDINGS, 2002, 224 : 215 - 233
  • [4] Generalizing cotilting dualities
    Mantese, F
    JOURNAL OF ALGEBRA, 2001, 236 (02) : 630 - 644
  • [5] Duality for derived categories and cotilting bimodules
    Miyachi, J
    JOURNAL OF ALGEBRA, 1996, 185 (02) : 583 - 603
  • [6] Derived dualities induced by a 1-cotilting bimodule
    Mantese, Francesca
    Tonolo, Alberto
    JOURNAL OF ALGEBRA, 2014, 411 : 12 - 46
  • [7] Localizations of cotilting comodules
    College of Applied Sciences, Beijing University of Technology, Beijing 100124, China
    Beijing Gongye Daxue Xuebao J. Beijing Univ. Technol., 1 (157-160):
  • [8] Simples in a cotilting heart
    Hugel, Lidia Angeleri
    Herzog, Ivo
    Laking, Rosanna
    MATHEMATISCHE ZEITSCHRIFT, 2024, 307 (01)
  • [9] BIMODULES
    Schmudgen, Konrad
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (09) : 3923 - 3938
  • [10] Finitely cotilting modules
    Angeleri Hugel, L
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (04) : 2147 - 2172