Some extensions of a property of linear representation functions

被引:2
|
作者
Tang, Min [1 ]
Chen, Yong-Gao [2 ]
机构
[1] Anhui Normal Univ, Dept Math, Wuhu 241000, Peoples R China
[2] Nanjing Normal Univ, Dept Math, Nanjing 210097, Peoples R China
基金
中国国家自然科学基金;
关键词
Additive representation functions; Erdos-Fuchs theorem;
D O I
10.1016/j.disc.2009.07.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A = {a(1), a(2), ...}(a(1) < a(2) < ...) be an infinite sequence of nonnegative integers. Let k >= 2 be a fixed integer and for n is an element of N, let R-k(A, n) be the number of solutions of a(i1) + ... + a(ik) = n, a(i1), ..., a(ik) is an element of A, and let R-k((1)) (A, n) and R-k((2))(A, n) denote the number of solutions with the additional restrictions a(i1) < ... < a(ik), and a(i1) <= ... <= a(ik) respectively. Recently, Horvath proved that if d > 0 is an integer, then there does not exist n(0) such that d <= R-2((2)) (A, n) <= d + [root 2d + 1/2] for n > n(0). In this paper, we obtain the analogous results for R-k(A, n), R-k((1))(A, n) and R-k((2)) (A, n). (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:6294 / 6298
页数:5
相关论文
共 50 条