Deciphering regulatory DNA sequences and noncoding genetic variants using neural network models of massively parallel reporter assays

被引:47
|
作者
Movva, Rajiv [1 ,2 ]
Greenside, Peyton [3 ]
Marinov, Georgi K. [2 ]
Nair, Surag [4 ]
Shrikumar, Avanti [4 ]
Kundaje, Anshul [2 ,4 ]
机构
[1] Harker Sch, San Jose, CA 95129 USA
[2] Stanford Univ, Dept Genet, Stanford, CA 94305 USA
[3] Stanford Univ, Biomed Informat Training Program, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
来源
PLOS ONE | 2019年 / 14卷 / 06期
关键词
POLYUNSATURATED FATTY-ACIDS; ENHANCER ACTIVITY MAPS; TRANSCRIPTION FACTORS; SYSTEMATIC DISSECTION; FUNCTIONAL DISSECTION; ELEMENTS;
D O I
10.1371/journal.pone.0218073
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The relationship between noncoding DNA sequence and gene expression is not well-understood. Massively parallel reporter assays (MPRAs), which quantify the regulatory activity of large libraries of DNA sequences in parallel, are a powerful approach to characterize this relationship. We present MPRA-DragoNN, a convolutional neural network (CNN)-based framework to predict and interpret the regulatory activity of DNA sequences as measured by MPRAs. While our method is generally applicable to a variety of MPRA designs, here we trained our model on the Sharpr-MPRA dataset that measures the activity of similar to 500,000 constructs tiling 15,720 regulatory regions in human K562 and HepG2 cell lines. MPRA-DragoNN predictions were moderately correlated (Spearman rho = 0.28) with measured activity and were within range of replicate concordance of the assay. State-of-the-art model interpretation methods revealed high-resolution predictive regulatory sequence features that overlapped transcription factor (TF) binding motifs. We used the model to investigate the cell type and chromatin state preferences of predictive TF motifs. We explored the ability of our model to predict the allelic effects of regulatory variants in an independent MPRA experiment and fine map putative functional SNPs in loci associated with lipid traits. Our results suggest that interpretable deep learning models trained on MPRA data have the potential to reveal meaningful patterns in regulatory DNA sequences and prioritize regulatory genetic variants, especially as larger, higher-quality datasets are produced.
引用
收藏
页数:20
相关论文
共 15 条
  • [1] Deciphering Gene Regulation Using Massively Parallel Reporter Assays
    Trauernicht, Max
    Martinez-Ara, Miguel
    van Steensel, Bas
    TRENDS IN BIOCHEMICAL SCIENCES, 2020, 45 (01) : 90 - 91
  • [2] A semisupervised model to predict regulatory effects of genetic variants at single nucleotide resolution using massively parallel reporter assays
    Yang, Zikun
    Wang, Chen
    Erjavec, Stephanie
    Petukhova, Lynn
    Christiano, Angela
    Ionita-Laza, Iuliana
    BIOINFORMATICS, 2021, 37 (14) : 1953 - 1962
  • [3] Understanding how cis-regulatory function is encoded in DNA sequence using massively parallel reporter assays and designed sequences
    White, Michael A.
    GENOMICS, 2015, 106 (03) : 165 - 170
  • [4] Massively Parallel Reporter Assays: Defining Functional Psychiatric Genetic Variants Across Biological Contexts
    Mulvey, Bernard
    Lagunas, Tomas, Jr.
    Dougherty, Joseph D.
    BIOLOGICAL PSYCHIATRY, 2021, 89 (01) : 76 - 89
  • [5] Massively parallel reporter perturbation assays uncover temporal regulatory architecture during neural differentiation
    Anat Kreimer
    Tal Ashuach
    Fumitaka Inoue
    Alex Khodaverdian
    Chengyu Deng
    Nir Yosef
    Nadav Ahituv
    Nature Communications, 13
  • [6] Massively parallel reporter perturbation assays uncover temporal regulatory architecture during neural differentiation
    Kreimer, Anat
    Ashuach, Tal
    Inoue, Fumitaka
    Khodaverdian, Alex
    Deng, Chengyu
    Yosef, Nir
    Ahituv, Nadav
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [7] Transcriptional-regulatory convergence across functional MDD risk variants identified by massively parallel reporter assays
    Mulvey, Bernard
    Dougherty, Joseph D.
    TRANSLATIONAL PSYCHIATRY, 2021, 11 (01)
  • [8] Transcriptional-regulatory convergence across functional MDD risk variants identified by massively parallel reporter assays
    Bernard Mulvey
    Joseph D. Dougherty
    Translational Psychiatry, 11
  • [9] High-throughput functional analysis of regulatory variants using a massively parallel reporter assay
    Delfosse, Kate
    Gerhardinger, Chiara
    Rinn, John L.
    Maass, Philipp G.
    STAR PROTOCOLS, 2023, 4 (04):
  • [10] The Search for and Functional Analysis of Genetic Variants in microRNA-Binding Sites using Massively Parallel Reporter Assay
    Rykova, E. Yu.
    Ershov, N. I.
    Degtyareva, A. O.
    Bryzgalov, L. O.
    Lushnikova, E. L.
    BULLETIN OF EXPERIMENTAL BIOLOGY AND MEDICINE, 2024, 176 (05) : 595 - 598