Adiabatic Quantum Computing for Max-Sum Diversification

被引:6
|
作者
Bauckhage, Christian [1 ,2 ]
Sifa, Rafet [1 ,2 ]
Wrobel, Stefan [1 ,2 ]
机构
[1] Fraunhofer Ctr Machine Learning, St Augustin, Germany
[2] Fraunhofer IAIS, St Augustin, Germany
来源
PROCEEDINGS OF THE 2020 SIAM INTERNATIONAL CONFERENCE ON DATA MINING (SDM) | 2020年
关键词
D O I
10.1137/1.9781611976236.39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The combinatorial problem of max-sum diversification asks for a maximally diverse subset of a given set of data. Here, we show that it can be expressed as an Ising energy minimization problem. Given this result, maxsum diversification can be solved on adiabatic quantum computers and we present proof of concept simulations which support this claim. This, in turn, suggests that quantum computing might play a role in data mining. We therefore discuss quantum computing in a tutorial like manner and elaborate on its current strengths and weaknesses for data analysis.
引用
收藏
页码:343 / 351
页数:9
相关论文
共 50 条
  • [1] Local Search for Max-Sum Diversification
    Cevallos, Alfonso
    Eisenbrand, Friedrich
    Zenklusen, Rico
    PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2017, : 130 - 142
  • [2] An Improved Analysis of Local Search for Max-Sum Diversification
    Cevallos, Alfonso
    Eisenbrand, Friedrich
    Zenklusen, Rico
    MATHEMATICS OF OPERATIONS RESEARCH, 2019, 44 (04) : 1494 - 1509
  • [3] Max-Sum Diversification, Monotone Submodular Functions, and Dynamic Updates
    Borodin, Allan
    Jain, Aadhar
    Lee, Hyun Chul
    Ye, Yuli
    ACM TRANSACTIONS ON ALGORITHMS, 2017, 13 (03)
  • [4] Max-sum diversification on image ranking with non-uniform matroid constraints
    Wu, Lin
    Wang, Yang
    Shepherd, John
    Zhao, Xiang
    NEUROCOMPUTING, 2013, 118 : 10 - 20
  • [5] Max-Sum Goes Private
    Tassa, Tamir
    Zivan, Roie
    Grinshpoun, Tal
    PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 425 - 431
  • [6] A note on max-sum equivalence
    Li, Jinzhu
    Tang, Qihe
    STATISTICS & PROBABILITY LETTERS, 2010, 80 (23-24) : 1720 - 1723
  • [7] Contrastive Max-Sum Opinion Summarization
    Ozsoy, Makbule Gulcin
    Cakici, Ruket
    INFORMATION RETRIEVAL TECHNOLOGY, AIRS 2014, 2014, 8870 : 256 - 267
  • [8] Contrastive max-sum opinion summarization
    1600, Springer Verlag (8870):
  • [9] Discriminative learning of max-sum classifiers
    Franc, Vojtech
    Savchynskyy, Bogdan
    JOURNAL OF MACHINE LEARNING RESEARCH, 2008, 9 : 67 - 104
  • [10] Semi-Supervised Max-Sum Clustering
    Voevodski, Konstantin
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 1495 - 1504