On the combinatorics of the Boros-Moll polynomials

被引:3
|
作者
Chen, William Y. C. [1 ]
Pang, Sabrina X. M. [1 ]
Qu, Ellen X. Y. [1 ]
机构
[1] Nankai Univ, Ctr Combinator, LPMC TJKLC, Tianjin 300071, Peoples R China
来源
RAMANUJAN JOURNAL | 2010年 / 21卷 / 01期
基金
美国国家科学基金会;
关键词
Jacobi polynomials; Boros-Moll polynomials; Reluctant function; Meixner endofunction; Bi-colored permutation; JACOBI-POLYNOMIALS; SEQUENCE; PROOFS;
D O I
10.1007/s11139-009-9160-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Boros-Moll polynomials arise in the evaluation of a quartic integral. The original double summation formula does not imply the fact that the coefficients of these polynomials are positive. Boros and Moll proved the positivity by using Ramanujan's Master Theorem to reduce the double sum to a single sum. Based on the structure of reluctant functions introduced by Mullin and Rota along with an extension of Foata's bijection between Meixner endofunctions and bi-colored permutations, we find a combinatorial proof of the positivity. In fact, from our combinatorial argument one sees that it is essentially the binomial theorem that makes it possible to reduce the double sum to a single sum.
引用
收藏
页码:41 / 51
页数:11
相关论文
共 50 条
  • [1] On the combinatorics of the Boros-Moll polynomials
    William Y. C. Chen
    Sabrina X. M. Pang
    Ellen X. Y. Qu
    The Ramanujan Journal, 2010, 21 : 41 - 51
  • [2] THE RATIO MONOTONICITY OF THE BOROS-MOLL POLYNOMIALS
    Chen, William Y. C.
    Xia, Ernest X. W.
    MATHEMATICS OF COMPUTATION, 2009, 78 (268) : 2269 - 2282
  • [3] A SYMMETRIC DECOMPOSITION OF THE BOROS-MOLL POLYNOMIALS
    Han, Guo-Niu
    Ma, Shi-Mei
    Yeh, Yeong-Nan
    arXiv, 2022,
  • [4] Branden's Conjectures on the Boros-Moll Polynomials
    Chen, William Y. C.
    Dou, Donna Q. J.
    Yang, Arthur L. B.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (20) : 4819 - 4828
  • [5] INTERLACING LOG-CONCAVITY OF THE BOROS-MOLL POLYNOMIALS
    Chen, William Y. C.
    Wang, Larry X. W.
    Xia, Ernest X. W.
    PACIFIC JOURNAL OF MATHEMATICS, 2011, 254 (01) : 89 - 99
  • [6] 2-LOG-CONCAVITY OF THE BOROS-MOLL POLYNOMIALS
    Chen, William Y. C.
    Xia, Ernest X. W.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2013, 56 (03) : 701 - 722
  • [7] THE REVERSE ULTRA LOG-CONCAVITY OF THE BOROS-MOLL POLYNOMIALS
    Chen, William Y. C.
    Gu, Cindy C. Y.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (12) : 3991 - 3998
  • [8] Partially 2-colored permutations and the Boros-Moll polynomials
    Chen, William Y. C.
    Pang, Sabrina X. M.
    Qu, Ellen X. Y.
    RAMANUJAN JOURNAL, 2012, 27 (03): : 297 - 304
  • [9] A conjecture on Boros-Moll polynomials due to Ma, Qi, Yeh and Yeh
    Dou, Donna Quanjie
    Sun, Lisa Hui
    APPLIED MATHEMATICS AND COMPUTATION, 2025, 490
  • [10] The concavity and convexity of the Boros-Moll sequences
    Xia, Ernest X. W.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (01):