Identifying Zeolite Frameworks with a Machine Learning Approach

被引:35
|
作者
Yang, Shujiang [1 ]
Lach-hab, Mohammed [1 ]
Vaisman, Iosif I. [1 ,3 ]
Blaisten-Barojas, Estela [1 ,2 ]
机构
[1] George Mason Univ, Computat Mat Sci Ctr, Fairfax, VA 22030 USA
[2] George Mason Univ, Dept Computat & Data Sci, Fairfax, VA 22030 USA
[3] George Mason Univ, Dept Bioinformat & Computat Biol, Manassas, VA 20110 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2009年 / 113卷 / 52期
基金
美国国家科学基金会;
关键词
NOMENCLATURE; SUPPORT; NETS;
D O I
10.1021/jp907017u
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Zeolites are microporous Crystalline materials with highly regular framework structures consisting of molecular-sized pores and channels. The characteristic framework type of a zeolite is conventionally defined by combining information on its coordination sequences, vertex symbols, tiling, and transitivity information. Here we present a novel knowledge-based approach for zeolite framework type classification. We show the predicting abilities of a machine learning model that uses a nine-dimensional feature vector including novel topological descriptors obtained by computational geometry techniques, together with selected physical and chemical properties of zeolite crystals. Trained oil the crystallographic structures of known zeolites, this model predicts the framework types of zeolite crystals with very high accuracy.
引用
收藏
页码:21721 / 21725
页数:5
相关论文
共 50 条
  • [1] Predicting the Mechanical Properties of Zeolite Frameworks by Machine Learning
    Evans, Jack D.
    Couder, Francois-Xavier
    [J]. CHEMISTRY OF MATERIALS, 2017, 29 (18) : 7833 - 7839
  • [2] Speeding Up Discovery of Auxetic Zeolite Frameworks by Machine Learning
    Gaillac, Romain
    Chibani, Siwar
    Coudert, Francois-Xavier
    [J]. CHEMISTRY OF MATERIALS, 2020, 32 (06) : 2653 - 2663
  • [3] Identifying novel oncogenes: A machine learning approach
    Ambuj Kumar
    Vidya Rajendran
    Rao Sethumadhavan
    Rituraj Purohit
    [J]. Interdisciplinary Sciences: Computational Life Sciences, 2013, 5 : 241 - 246
  • [4] Identifying Novel Oncogenes: A Machine Learning Approach
    Kumar, Ambuj
    Rajendran, Vidya
    Sethumadhavan, Rao
    Purohit, Rituraj
    [J]. INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2013, 5 (04) : 241 - 246
  • [5] Identifying Promising Zeolite Frameworks for Separation Applications: A Building-Block-Based Approach
    Fischer, Michael
    Bell, Robert G.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (33): : 17099 - 17110
  • [6] Identifying and classifying social groups: A machine learning approach
    Roffilli, Matteo
    Lomi, Alessandro
    [J]. DATA SCIENCE AND CLASSIFICATION, 2006, : 149 - +
  • [7] A machine learning approach to identifying different types of uncertainty
    Saltzman, Bennett
    Yung, Julieta
    [J]. ECONOMICS LETTERS, 2018, 171 : 58 - 62
  • [8] A Machine Learning Approach to Identifying Changes in Suicidal Language
    Pestian, John
    Santel, Daniel
    Sorter, Michael
    Bayram, Ulya
    Connolly, Brian
    Glauser, Tracy
    DelBello, Melissa
    Tamang, Suzanne
    Cohen, Kevin
    [J]. SUICIDE AND LIFE-THREATENING BEHAVIOR, 2020, 50 (05) : 939 - 947
  • [9] Identifying Hosts of Families of Viruses: A Machine Learning Approach
    Raj, Anil
    Dewar, Michael
    Palacios, Gustavo
    Rabadan, Raul
    Wiggins, Christopher H.
    [J]. PLOS ONE, 2011, 6 (12):
  • [10] Identifying Politically Connected Firms: A Machine Learning Approach
    Titl, Vitezslav
    Mazrekaj, Deni
    Schiltz, Fritz
    [J]. OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2024, 86 (01) : 137 - 155