Deep Convolutional Neural Network Ensembles For Multi-Classification of Skin Lesions From Dermoscopic and Clinical Images

被引:0
|
作者
Reisinho, Jose [1 ]
Coimbra, Miguel [2 ]
Renna, Francesco [3 ]
机构
[1] Univ Porto, Fac Ciencias, Porto, Portugal
[2] Univ Porto, Fac Ciencias, INESC TEC, Porto, Portugal
[3] Univ Porto, Fac Ciencias, Inst Telecomunicacoes, Porto, Portugal
关键词
DERMATOLOGISTS; CANCER;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper, we consider the problem of classifying skin lesions into multiple classes using both dermoscopic and clinical images. Different convolutional neural network architectures are considered for this task and a novel ensemble scheme is proposed, which makes use of a progressive transfer learning strategy. The proposed approach is tested over a dataset of 4000 images containing both dermoscopic and clinical examples and it is shown to achieve an average specificity of 93.3% and an average sensitivity of 79.9% in discriminating skin lesions belonging to four different classes.
引用
收藏
页码:1940 / 1943
页数:4
相关论文
共 50 条
  • [1] Automated multi-class classification of skin lesions through deep convolutional neural network with dermoscopic images
    Iqbal, Imran
    Younus, Muhammad
    Walayat, Khuram
    Kakar, Mohib Ullah
    Ma, Jinwen
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2021, 88
  • [2] Multi-Classification of Polyps in Colonoscopy Images Based on an Improved Deep Convolutional Neural Network
    Liu, Shuang
    Liu, Xiao
    Chang, Shilong
    Sun, Yufeng
    Li, Kaiyuan
    Hou, Ya
    Wang, Shiwei
    Meng, Jie
    Zhao, Qingliang
    Wu, Sibei
    Yang, Kun
    Xue, Linyan
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (03): : 5837 - 5852
  • [3] Automated skin lesion detection and classification using fused deep convolutional neural network on dermoscopic images
    Pramila, Rayappa Priyanka
    Subhashini, Radhakrishnan
    [J]. COMPUTATIONAL INTELLIGENCE, 2023, 39 (06) : 1073 - 1087
  • [4] Skin lesion classification in dermoscopic images using stacked Convolutional Neural Network
    Ahmad Hameed
    Muhammad Umer
    Umair Hafeez
    Hassan Mustafa
    Ahmed Sohaib
    Muhammad Abubakar Siddique
    Hamza Ahmad Madni
    [J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 3551 - 3565
  • [5] Skin lesion classification in dermoscopic images using stacked Convolutional Neural Network
    Hameed, Ahmad
    Umer, Muhammad
    Hafeez, Umair
    Mustafa, Hassan
    Sohaib, Ahmed
    Siddique, Muhammad Abubakar
    Madni, Hamza Ahmad
    [J]. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 14 (4) : 3551 - 3565
  • [6] Classification of skin cancer from dermoscopic images using deep neural network architectures
    Jaisakthi S M
    Mirunalini P
    Chandrabose Aravindan
    Rajagopal Appavu
    [J]. Multimedia Tools and Applications, 2023, 82 : 15763 - 15778
  • [7] Classification of skin cancer from dermoscopic images using deep neural network architectures
    Jaisakthi, S. M.
    Mirunalini, P.
    Aravindan, Chandrabose
    Appavu, Rajagopal
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (10) : 15763 - 15778
  • [8] Melanoma Classification Using a Novel Deep Convolutional Neural Network with Dermoscopic Images
    Kaur, Ranpreet
    GholamHosseini, Hamid
    Sinha, Roopak
    Linden, Maria
    [J]. SENSORS, 2022, 22 (03)
  • [9] Diagnosis and multi-classification of lung diseases in CXR images using optimized deep convolutional neural network
    Ashwini, S.
    Arunkumar, J. R.
    Prabu, R. Thandaiah
    Singh, Ngangbam Herojit
    Singh, Ngangbam Phalguni
    [J]. SOFT COMPUTING, 2023, 28 (7-8): : 6219 - 6233
  • [10] Multi-Classification of Brain Tumor Images Using Deep Neural Network
    Sultan, Hossam H.
    Salem, Nancy M.
    Al-Atabany, Walid
    [J]. IEEE ACCESS, 2019, 7 : 69215 - 69225