G-estimation of structural nested mean models for competing risks data using pseudo-observations

被引:2
|
作者
Tanaka, Shiro [1 ]
Brookhart, M. Alan [2 ]
Fine, Jason P. [3 ]
机构
[1] Kyoto Univ, Grad Sch Med, Dept Clin Biostat, Sakyo Ku, Yoshida Konoe Cho, Kyoto 6068501, Japan
[2] Univ N Carolina, Dept Epidemiol, 2105F McGavran Greenberg Hall, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Dept Biostat, 3103B McGavran Greenberg Hall, Chapel Hill, NC 27599 USA
基金
日本科学技术振兴机构;
关键词
Aalen-Johansen estimator; Fine-Gray model; Jackknife; Observational study; Time-dependent confoundin; INSTRUMENTAL VARIABLES ESTIMATION; CUMULATIVE INCIDENCE; CAUSAL INFERENCE;
D O I
10.1093/biostatistics/kxz015
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This article provides methods of causal inference for competing risks data. The methods are formulated as structural nested mean models of causal effects directly related to the cumulative incidence function or subdistribution hazard, which reflect the survival experience of a subject in the presence of competing risks. The effect measures include causal risk differences, causal risk ratios, causal subdistribution hazard ratios, and causal effects of time-varying exposures. Inference is implemented by g-estimation using pseudo-observations, a technique to handle censoring. The finite-sample performance of the proposed estimators in simulated datasets and application to time-varying exposures in a cohort study of type 2 diabetes are also presented.
引用
收藏
页码:860 / 875
页数:16
相关论文
共 50 条
  • [1] G-estimation of structural nested mean models for interval-censored data using pseudo-observations
    Tanaka, Shiro
    Brookhart, M. Alan
    Fine, Jason
    [J]. STATISTICS IN MEDICINE, 2023, 42 (21) : 3877 - 3891
  • [2] An R Package for G-estimation of Structural Nested Mean Models
    Wallace, Michael P.
    Moodie, Erica E. M.
    Stephens, David A.
    [J]. EPIDEMIOLOGY, 2017, 28 (02) : E18 - E20
  • [3] Regression analysis of restricted mean survival time based on pseudo-observations for competing risks data
    Wang, Xin
    Xue, Xiaoming
    Sun, Liuquan
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (22) : 5614 - 5625
  • [4] Multiple imputation for competing risks survival data via pseudo-observations
    Han, Seungbong
    Andrei, Adin-Cristian
    Tsui, Kam-Wah
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2018, 25 (04) : 385 - 396
  • [5] Pseudo-observations for competing risks with covariate dependent censoring
    Nadine Binder
    Thomas A. Gerds
    Per Kragh Andersen
    [J]. Lifetime Data Analysis, 2014, 20 : 303 - 315
  • [6] Pseudo-observations for competing risks with covariate dependent censoring
    Binder, Nadine
    Gerds, Thomas A.
    Andersen, Per Kragh
    [J]. LIFETIME DATA ANALYSIS, 2014, 20 (02) : 303 - 315
  • [7] Structural Nested Models and G-estimation: The Partially Realized Promise
    Vansteelandt, Stijn
    Joffe, Marshall
    [J]. STATISTICAL SCIENCE, 2014, 29 (04) : 707 - 731
  • [8] G-estimation of structural nested cumulative failure time models
    Picciotto, S.
    Young, J.
    Hernan, M. A.
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2008, 167 (11) : S139 - S139
  • [9] Dynamic Pseudo-Observations: A Robust Approach to Dynamic Prediction in Competing Risks
    Nicolaie, M. A.
    van Houwelingen, J. C.
    de Witte, T. M.
    Putter, H.
    [J]. BIOMETRICS, 2013, 69 (04) : 1043 - 1052
  • [10] Visualising survival data regression models using pseudo-observations
    Perme, Maja Pohar
    Andersen, Per Kragh
    [J]. PROCEEDINGS OF THE ITI 2008 30TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY INTERFACES, 2008, : 377 - +