Lightweight CoAP-Based Bootstrapping Service for the Internet of Things

被引:26
|
作者
Garcia-Carrillo, Dan [1 ]
Marin-Lopez, Rafael [1 ]
机构
[1] Univ Murcia, Fac Comp Sci, Dept Informat & Commun Engn DIIC, E-30100 Murcia, Spain
关键词
bootstrapping; CoAP; IoT; lightweight; EAP; AAA; IP-BASED INTERNET; PROTOCOL; IOT; IMPLEMENTATION;
D O I
10.3390/s16030358
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The Internet of Things (IoT) is becoming increasingly important in several fields of industrial applications and personal applications, such as medical e-health, smart cities, etc. The research into protocols and security aspects related to this area is continuously advancing in making these networks more reliable and secure, taking into account these aspects by design. Bootstrapping is a procedure by which a user obtains key material and configuration information, among other parameters, to operate as an authenticated party in a security domain. Until now solutions have focused on re-using security protocols that were not developed for IoT constraints. For this reason, in this work we propose a design and implementation of a lightweight bootstrapping service for IoT networks that leverages one of the application protocols used in IoT : Constrained Application Protocol (CoAP). Additionally, in order to provide flexibility, scalability, support for large scale deployment, accountability and identity federation, our design uses technologies such as the Extensible Authentication Protocol (EAP) and Authentication Authorization and Accounting (AAA). We have named this service CoAP-EAP. First, we review the state of the art in the field of bootstrapping and specifically for IoT. Second, we detail the bootstrapping service: the architecture with entities and interfaces and the flow operation. Third, we obtain performance measurements of CoAP-EAP (bootstrapping time, memory footprint, message processing time, message length and energy consumption) and compare them with PANATIKI. The most significant and constrained representative of the bootstrapping solutions related with CoAP-EAP. As we will show, our solution provides significant improvements, mainly due to an important reduction of the message length.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] CoAP-Based Mobility Management for the Internet of Things
    Chun, Seung-Man
    Kim, Hyun-Su
    Park, Jong-Tae
    [J]. SENSORS, 2015, 15 (07) : 16060 - 16082
  • [2] Hybrid CoAP-based resource discovery for the Internet of Things
    Badis Djamaa
    Ali Yachir
    Mark Richardson
    [J]. Journal of Ambient Intelligence and Humanized Computing, 2017, 8 : 357 - 372
  • [3] Hybrid CoAP-based resource discovery for the Internet of Things
    Djamaa, Badis
    Yachir, Ali
    Richardson, Mark
    [J]. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2017, 8 (03) : 357 - 372
  • [4] A Security Approach for CoAP-based Internet of Things Resource Discovery
    Khalil, Kasem
    Elgazzar, Khalid
    Abdelgawad, Ahmed
    Bayoumi, Magdy
    [J]. 2020 IEEE 6TH WORLD FORUM ON INTERNET OF THINGS (WF-IOT), 2020,
  • [5] An Authentication and Access Control Framework for CoAP-based Internet of Things
    Pereira, Pablo Punal
    Eliasson, Jens
    Delsing, Jerker
    [J]. IECON 2014 - 40TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2014, : 5293 - 5299
  • [6] CoAP-Based Request-Response Interaction Model for the Internet of Things
    Khan, Fazlullah
    Rahman, Izaz Ur
    Khan, Mukhtaj
    Iqbal, Nadeem
    Alam, Muhammad
    [J]. FUTURE INTELLIGENT VEHICULAR TECHNOLOGIES, FUTURE 5V 2016, 2017, 185 : 146 - 156
  • [7] Enhanced DTLS with CoAP-based authentication scheme for the internet of things in healthcare application
    Priyan Malarvizhi Kumar
    Usha Devi Gandhi
    [J]. The Journal of Supercomputing, 2020, 76 : 3963 - 3983
  • [8] Enhanced DTLS with CoAP-based authentication scheme for the internet of things in healthcare application
    Kumar, Priyan Malarvizhi
    Gandhi, Usha Devi
    [J]. JOURNAL OF SUPERCOMPUTING, 2020, 76 (06): : 3963 - 3983
  • [9] Distributed Pub/Sub Model in CoAP-based Internet-of-Things Networks
    Jung, Joong-Hwa
    Choi, Dong-Kyu
    Koh, Seok-Joo
    [J]. 2018 32ND INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN), 2018, : 657 - 662
  • [10] Lithe: Lightweight Secure CoAP for the Internet of Things
    Raza, Shahid
    Shafagh, Hossein
    Hewage, Kasun
    Hummen, Rene
    Voigt, Thiemo
    [J]. IEEE SENSORS JOURNAL, 2013, 13 (10) : 3711 - 3720