An Efficient Marine Predators Algorithm for Solving Multi-Objective Optimization Problems: Analysis and Validations

被引:24
|
作者
Abdel-Basset, Mohamed [1 ]
Mohamed, Reda [1 ]
Mirjalili, Seyedali [2 ]
Chakrabortty, Ripon K. [3 ]
Ryan, Michael [3 ]
机构
[1] Zagazig Univ, Fac Comp & Informat, Zagazig 44519, Egypt
[2] Torrens Univ Australia, Ctr Artificial Intelligence Res & Optimizat, Fortitude Valley, Qld 4006, Australia
[3] UNSW Canberra, Sch Engn & Informat Technol, Capabil Syst Ctr, Campbell, ACT 2612, Australia
来源
IEEE ACCESS | 2021年 / 9卷 / 09期
关键词
Optimization; Evolutionary computation; Heuristic algorithms; Pareto optimization; Search problems; Convergence; Australia; Multi-objective optimization problem; dominance strategy-based exploration-exploitation; Gaussian-based mutation; Nelder-Mead simplex; marine predators algorithm; PARTICLE SWARM OPTIMIZATION; EVOLUTIONARY ALGORITHM; OBJECTIVE OPTIMIZATION; SELECTION; CONSTRAINTS;
D O I
10.1109/ACCESS.2021.3066323
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, a new strong optimization algorithm called marine predators algorithm (MPA) has been proposed for tackling the single-objective optimization problems and could dramatically fulfill good outcomes in comparison to the other compared algorithms. Those dramatic outcomes, in addition to our recently-proposed strategies for helping meta-heuristic algorithms in fulfilling better outcomes for the multi-objective optimization problems, motivate us to make a comprehensive study to see the performance of MPA alone and with those strategies for those optimization problems. Specifically, This paper proposes four variants of the marine predators' algorithm (MPA) for solving multi-objective optimization problems. The first version, called the multi-objective marine predators' algorithm (MMPA) is based on the behavior of marine predators in finding their prey. In the second version, a novel strategy called dominance strategy-based exploration-exploitation (DSEE) recently-proposed is effectively incorporated with MMPA to relate the exploration and exploitation phase of MPA to the dominance of the solutions-this version is called M-MMPA. DSEE counts the number of dominated solutions for each solution-the solutions with high dominance undergo an exploitation phase; the others with small dominance undergo the exploration phase. The third version integrates M-MMPA with a novel strategy called Gaussian-based mutation, which uses the Gaussian distribution-based exploration and exploitation strategy to search for the optimal solution. The fourth version uses the Nelder-Mead simplex method with M-MMPA (M-MMPA-NMM) at the start of the optimization process to construct a front of the non-dominated solutions that will help M-MMPA to find more good solutions. The effectiveness of the four versions is validated on a large set of theoretical and practical problems. For all the cases, the proposed algorithm and its variants are shown to be superior to a number of well-known multi-objective optimization algorithms.
引用
收藏
页码:42817 / 42844
页数:28
相关论文
共 50 条
  • [1] MOIMPA: multi-objective improved marine predators algorithm for solving multi-objective optimization problems
    Hassan, Mohamed H.
    Daqaq, Fatima
    Selim, Ali
    Dominguez-Garcia, Jose Luis
    Kamel, Salah
    [J]. SOFT COMPUTING, 2023, 27 (21) : 15719 - 15740
  • [2] MOIMPA: multi-objective improved marine predators algorithm for solving multi-objective optimization problems
    Mohamed H. Hassan
    Fatima Daqaq
    Ali Selim
    José Luis Domínguez-García
    Salah Kamel
    [J]. Soft Computing, 2023, 27 : 15719 - 15740
  • [3] MOMPA: Multi-objective marine predator algorithm for solving multi-objective optimization problems
    Jangir, Pradeep
    Buch, Hitarth
    Mirjalili, Seyedali
    Manoharan, Premkumar
    [J]. EVOLUTIONARY INTELLIGENCE, 2023, 16 (01) : 169 - 195
  • [4] MOMPA: Multi-objective marine predator algorithm for solving multi-objective optimization problems
    Pradeep Jangir
    Hitarth Buch
    Seyedali Mirjalili
    Premkumar Manoharan
    [J]. Evolutionary Intelligence, 2023, 16 : 169 - 195
  • [5] An efficient slime mould algorithm for solving multi-objective optimization problems
    Houssein, Essam H.
    Mahdy, Mohamed A.
    Shebl, Doaa
    Manzoor, Awais
    Sarkar, Ram
    Mohamed, Waleed M.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2022, 187
  • [6] Multi-objective Jaya Algorithm for Solving Constrained Multi-objective Optimization Problems
    Naidu, Y. Ramu
    Ojha, A. K.
    Devi, V. Susheela
    [J]. ADVANCES IN HARMONY SEARCH, SOFT COMPUTING AND APPLICATIONS, 2020, 1063 : 89 - 98
  • [7] An efficient Differential Evolution based algorithm for solving multi-objective optimization problems
    Ali, Musrrat.
    Siarry, Patrick
    Pant, Millie.
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2012, 217 (02) : 404 - 416
  • [8] Multi-objective chicken swarm optimization: A novel algorithm for solving multi-objective optimization problems
    Zouache, Djaafar
    Arby, Yahya Quid
    Nouioua, Farid
    Ben Abdelaziz, Fouad
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 2019, 129 : 377 - 391
  • [9] A Multi-Objective Carnivorous Plant Algorithm for Solving Constrained Multi-Objective Optimization Problems
    Yang, Yufei
    Zhang, Changsheng
    [J]. BIOMIMETICS, 2023, 8 (02)
  • [10] MOCOVIDOA: a novel multi-objective coronavirus disease optimization algorithm for solving multi-objective optimization problems
    Khalid, Asmaa M. M.
    Hamza, Hanaa M. M.
    Mirjalili, Seyedali
    Hosny, Khaid M. M.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2023, 35 (23): : 17319 - 17347