On the Tail Probabilities of Aggregated Lognormal Random Fields with Small Noise

被引:2
|
作者
Li, Xiaoou [1 ]
Liu, Jingchen [1 ]
Xu, Gongjun [2 ]
机构
[1] Columbia Univ, Dept Stat, New York, NY 10027 USA
[2] Univ Minnesota, Sch Stat, Se Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Gaussian process; exponential integral; change of measure; GAUSSIAN RANDOM-FIELDS; VALUE-AT-RISK; RANDOM-VARIABLES; BROWNIAN-MOTION; INTEGRALS; SUMS;
D O I
10.1287/moor.2015.0724
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We develop asymptotic approximations for the tail probabilities of integrals of lognormal random fields. We consider the asymptotic regime that the variance of the random field converges to zero. Under this setting, the integral converges to its limiting value. This analysis is of interest in considering short-term portfolio risk analysis (such as daily performance), for which the variances of log-returns could be as small as a few percent.
引用
收藏
页码:236 / 246
页数:11
相关论文
共 50 条
  • [1] TAIL PROBABILITIES OF THE MAXIMA OF GAUSSIAN RANDOM-FIELDS
    SUN, JY
    [J]. ANNALS OF PROBABILITY, 1993, 21 (01): : 34 - 71
  • [2] EFFICIENT SIMULATION FOR TAIL PROBABILITIES OF GAUSSIAN RANDOM FIELDS
    Adler, Robert J.
    Blanchet, Jose
    Liu, Jingchen
    [J]. 2008 WINTER SIMULATION CONFERENCE, VOLS 1-5, 2008, : 328 - +
  • [3] APPROXIMATE TAIL PROBABILITIES FOR THE MAXIMA OF SOME RANDOM-FIELDS
    SIEGMUND, D
    [J]. ANNALS OF PROBABILITY, 1988, 16 (02): : 487 - 501
  • [4] UNIFORMLY EFFICIENT SIMULATION FOR TAIL PROBABILITIES OF GAUSSIAN RANDOM FIELDS
    Xu, Gongjun
    [J]. PROCEEDINGS OF THE 2014 WINTER SIMULATION CONFERENCE (WSC), 2014, : 533 - 542
  • [5] Efficient Algorithms for Tail Probabilities of Exchangeable Lognormal Sums
    Dingec, Kemal Dincer
    Hormann, Wolfgang
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2022, 24 (03) : 2093 - 2121
  • [6] Efficient Algorithms for Tail Probabilities of Exchangeable Lognormal Sums
    Kemal Dinçer Dingeç
    Wolfgang Hörmann
    [J]. Methodology and Computing in Applied Probability, 2022, 24 : 2093 - 2121
  • [7] Small Ball Probabilities for Certain Gaussian Random Fields
    Leonid V. Rozovsky
    [J]. Journal of Theoretical Probability, 2019, 32 : 934 - 949
  • [8] Small Ball Probabilities for Certain Gaussian Random Fields
    Rozovsky, Leonid V.
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2019, 32 (02) : 934 - 949
  • [9] On the tail behaviour of aggregated random variables
    Richards, Jordan
    Tawn, Jonathan A.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 192
  • [10] Estimation and simulation of lognormal random fields
    Lee, YM
    Ellis, JH
    [J]. COMPUTERS & GEOSCIENCES, 1997, 23 (01) : 19 - 31