Error bounds for the solution sets of generalized polynomial complementarity problems

被引:0
|
作者
Wang, Jie [1 ,2 ]
机构
[1] China Jiliang Univ, Coll Sci, Hangzhou 310018, Peoples R China
[2] China Jiliang Univ, Inst Microgrid Technol, Hangzhou 310018, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2022年 / 70卷 / 19期
基金
中国国家自然科学基金;
关键词
Generalized polynomial complementarity problem; error bound; tensor decomposition;
D O I
10.1080/03081087.2020.1860885
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, several error bounds for the solution sets of the generalized polynomial complementarity problems (GPCPs) with explicit exponents are given. As the solution set of a GPCP is the solution set of a system of polynomial equalities and inequalities, the state-of-art results in error bounds for polynomial systems can be applied directly. Starting from this, a much better error bound result for the solution set of a GPCP based on exploring the intrinsic sparsity via tensor decomposition is established.
引用
收藏
页码:3982 / 3993
页数:12
相关论文
共 50 条
  • [1] Error Bounds for the Solution Sets of Quadratic Complementarity Problems
    Shenglong Hu
    Jie Wang
    Zheng-Hai Huang
    Journal of Optimization Theory and Applications, 2018, 179 : 983 - 1000
  • [2] Error Bounds for the Solution Sets of Quadratic Complementarity Problems
    Hu, Shenglong
    Wang, Jie
    Huang, Zheng-Hai
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 179 (03) : 983 - 1000
  • [3] Nonemptiness and Compactness of Solution Sets to Generalized Polynomial Complementarity Problems
    Zheng, Meng-Meng
    Huang, Zheng-Hai
    Ma, Xiao-Xiao
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2020, 185 (01) : 80 - 98
  • [4] Nonemptiness and Compactness of Solution Sets to Generalized Polynomial Complementarity Problems
    Meng-Meng Zheng
    Zheng-Hai Huang
    Xiao-Xiao Ma
    Journal of Optimization Theory and Applications, 2020, 185 : 80 - 98
  • [5] On error bounds of polynomial complementarity problems with structured tensors
    Ling, Liyun
    He, Hongjin
    Ling, Chen
    OPTIMIZATION, 2018, 67 (02) : 341 - 358
  • [6] PROPERTIES OF THE SOLUTION SET OF GENERALIZED POLYNOMIAL COMPLEMENTARITY PROBLEMS
    Ling, Liyun
    Ling, Chen
    He, Hongjin
    PACIFIC JOURNAL OF OPTIMIZATION, 2020, 16 (01): : 155 - 174
  • [7] The Bounds of Solutions to Polynomial Complementarity Problems
    Li, Xue-liu
    Tang, Guo-ji
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, : 2560 - 2591
  • [8] Error Bounds for Linear Complementarity Problems of Nekrasov and Generalized Nekrasov Matrices
    Wang, Shiyun
    Liu, Dan
    Tian, Wanfu
    Lyu, Zhen-Hua
    ACTA APPLICANDAE MATHEMATICAE, 2024, 191 (01)
  • [9] Error bounds for regularized complementarity problems
    Tseng, P
    ILL-POSED VARIATIONAL PROBLEMS AND REGULARIZATION TECHNIQUES, 1999, 477 : 247 - 274
  • [10] SOLUTION PROPERTIES AND ERROR BOUNDS FOR SEMI-INFINITE COMPLEMENTARITY PROBLEMS
    Zhou, Jinchuan
    Xiu, Naihua
    Chen, Jein-Shan
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2013, 9 (01) : 99 - 115